Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles
Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting condition...
Gespeichert in:
Veröffentlicht in: | GetMobile (New York, N.Y.) N.Y.), 2019-05, Vol.22 (4), p.30-34 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 4 |
container_start_page | 30 |
container_title | GetMobile (New York, N.Y.) |
container_volume | 22 |
creator | Qiu, Hang Ahmad, Fawad Bai, Fan Gruteser, Marco Govindan, Ramesh |
description | Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting conditions. To improve visibility and performance, we explore a capability called Augmented Vehicular Reality (AVR). AVR broadens the vehicle's visual horizon by enabling it to wirelessly share visual information with other nearby vehicles. We show that AVR is feasible using off-the-shelf wireless technologies, and it can qualitatively change the decisions made by autonomous vehicle path planning algorithms. Our AVR prototype achieves positioning accuracies that are within a few percentages of car lengths and lane widths, and it is optimized to process frames at 30fps. |
doi_str_mv | 10.1145/3325867.3325880 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3325867_3325880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3325867_3325880</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_3325867_33258803</originalsourceid><addsrcrecordid>eNpjYBA3NNAzNDQx1Tc2NjK1MDPXA9MWBkwMnEbG5qa6BqbG5ixwtpElBwNvcXGWgYGBoamhIRBzMkg7lqbnpuaVpKYohKVmZCaX5iQWKQSlJuZkllTyMLCmJeYUp_JCaW4GfTfXEGcP3eSi_OLiotS0-IKizNzEosp4Q4N4kDPioc6IhzrDmHQdAAsfNxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles</title><source>ACM Digital Library Complete</source><creator>Qiu, Hang ; Ahmad, Fawad ; Bai, Fan ; Gruteser, Marco ; Govindan, Ramesh</creator><creatorcontrib>Qiu, Hang ; Ahmad, Fawad ; Bai, Fan ; Gruteser, Marco ; Govindan, Ramesh</creatorcontrib><description>Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting conditions. To improve visibility and performance, we explore a capability called Augmented Vehicular Reality (AVR). AVR broadens the vehicle's visual horizon by enabling it to wirelessly share visual information with other nearby vehicles. We show that AVR is feasible using off-the-shelf wireless technologies, and it can qualitatively change the decisions made by autonomous vehicle path planning algorithms. Our AVR prototype achieves positioning accuracies that are within a few percentages of car lengths and lane widths, and it is optimized to process frames at 30fps.</description><identifier>ISSN: 2375-0529</identifier><identifier>EISSN: 2375-0537</identifier><identifier>DOI: 10.1145/3325867.3325880</identifier><language>eng</language><ispartof>GetMobile (New York, N.Y.), 2019-05, Vol.22 (4), p.30-34</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1145_3325867_33258803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Qiu, Hang</creatorcontrib><creatorcontrib>Ahmad, Fawad</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Gruteser, Marco</creatorcontrib><creatorcontrib>Govindan, Ramesh</creatorcontrib><title>Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles</title><title>GetMobile (New York, N.Y.)</title><description>Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting conditions. To improve visibility and performance, we explore a capability called Augmented Vehicular Reality (AVR). AVR broadens the vehicle's visual horizon by enabling it to wirelessly share visual information with other nearby vehicles. We show that AVR is feasible using off-the-shelf wireless technologies, and it can qualitatively change the decisions made by autonomous vehicle path planning algorithms. Our AVR prototype achieves positioning accuracies that are within a few percentages of car lengths and lane widths, and it is optimized to process frames at 30fps.</description><issn>2375-0529</issn><issn>2375-0537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpjYBA3NNAzNDQx1Tc2NjK1MDPXA9MWBkwMnEbG5qa6BqbG5ixwtpElBwNvcXGWgYGBoamhIRBzMkg7lqbnpuaVpKYohKVmZCaX5iQWKQSlJuZkllTyMLCmJeYUp_JCaW4GfTfXEGcP3eSi_OLiotS0-IKizNzEosp4Q4N4kDPioc6IhzrDmHQdAAsfNxM</recordid><startdate>20190502</startdate><enddate>20190502</enddate><creator>Qiu, Hang</creator><creator>Ahmad, Fawad</creator><creator>Bai, Fan</creator><creator>Gruteser, Marco</creator><creator>Govindan, Ramesh</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190502</creationdate><title>Augmented Vehicular Reality</title><author>Qiu, Hang ; Ahmad, Fawad ; Bai, Fan ; Gruteser, Marco ; Govindan, Ramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_3325867_33258803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Hang</creatorcontrib><creatorcontrib>Ahmad, Fawad</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Gruteser, Marco</creatorcontrib><creatorcontrib>Govindan, Ramesh</creatorcontrib><collection>CrossRef</collection><jtitle>GetMobile (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Hang</au><au>Ahmad, Fawad</au><au>Bai, Fan</au><au>Gruteser, Marco</au><au>Govindan, Ramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles</atitle><jtitle>GetMobile (New York, N.Y.)</jtitle><date>2019-05-02</date><risdate>2019</risdate><volume>22</volume><issue>4</issue><spage>30</spage><epage>34</epage><pages>30-34</pages><issn>2375-0529</issn><eissn>2375-0537</eissn><abstract>Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting conditions. To improve visibility and performance, we explore a capability called Augmented Vehicular Reality (AVR). AVR broadens the vehicle's visual horizon by enabling it to wirelessly share visual information with other nearby vehicles. We show that AVR is feasible using off-the-shelf wireless technologies, and it can qualitatively change the decisions made by autonomous vehicle path planning algorithms. Our AVR prototype achieves positioning accuracies that are within a few percentages of car lengths and lane widths, and it is optimized to process frames at 30fps.</abstract><doi>10.1145/3325867.3325880</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-0529 |
ispartof | GetMobile (New York, N.Y.), 2019-05, Vol.22 (4), p.30-34 |
issn | 2375-0529 2375-0537 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3325867_3325880 |
source | ACM Digital Library Complete |
title | Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Vehicular%20Reality:%20Enabling%20Extended%20Vision%20for%20Future%20Automobiles&rft.jtitle=GetMobile%20(New%20York,%20N.Y.)&rft.au=Qiu,%20Hang&rft.date=2019-05-02&rft.volume=22&rft.issue=4&rft.spage=30&rft.epage=34&rft.pages=30-34&rft.issn=2375-0529&rft.eissn=2375-0537&rft_id=info:doi/10.1145/3325867.3325880&rft_dat=%3Ccrossref%3E10_1145_3325867_3325880%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |