Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles

Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GetMobile (New York, N.Y.) N.Y.), 2019-05, Vol.22 (4), p.30-34
Hauptverfasser: Qiu, Hang, Ahmad, Fawad, Bai, Fan, Gruteser, Marco, Govindan, Ramesh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 4
container_start_page 30
container_title GetMobile (New York, N.Y.)
container_volume 22
creator Qiu, Hang
Ahmad, Fawad
Bai, Fan
Gruteser, Marco
Govindan, Ramesh
description Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting conditions. To improve visibility and performance, we explore a capability called Augmented Vehicular Reality (AVR). AVR broadens the vehicle's visual horizon by enabling it to wirelessly share visual information with other nearby vehicles. We show that AVR is feasible using off-the-shelf wireless technologies, and it can qualitatively change the decisions made by autonomous vehicle path planning algorithms. Our AVR prototype achieves positioning accuracies that are within a few percentages of car lengths and lane widths, and it is optimized to process frames at 30fps.
doi_str_mv 10.1145/3325867.3325880
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3325867_3325880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3325867_3325880</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_3325867_33258803</originalsourceid><addsrcrecordid>eNpjYBA3NNAzNDQx1Tc2NjK1MDPXA9MWBkwMnEbG5qa6BqbG5ixwtpElBwNvcXGWgYGBoamhIRBzMkg7lqbnpuaVpKYohKVmZCaX5iQWKQSlJuZkllTyMLCmJeYUp_JCaW4GfTfXEGcP3eSi_OLiotS0-IKizNzEosp4Q4N4kDPioc6IhzrDmHQdAAsfNxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles</title><source>ACM Digital Library Complete</source><creator>Qiu, Hang ; Ahmad, Fawad ; Bai, Fan ; Gruteser, Marco ; Govindan, Ramesh</creator><creatorcontrib>Qiu, Hang ; Ahmad, Fawad ; Bai, Fan ; Gruteser, Marco ; Govindan, Ramesh</creatorcontrib><description>Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting conditions. To improve visibility and performance, we explore a capability called Augmented Vehicular Reality (AVR). AVR broadens the vehicle's visual horizon by enabling it to wirelessly share visual information with other nearby vehicles. We show that AVR is feasible using off-the-shelf wireless technologies, and it can qualitatively change the decisions made by autonomous vehicle path planning algorithms. Our AVR prototype achieves positioning accuracies that are within a few percentages of car lengths and lane widths, and it is optimized to process frames at 30fps.</description><identifier>ISSN: 2375-0529</identifier><identifier>EISSN: 2375-0537</identifier><identifier>DOI: 10.1145/3325867.3325880</identifier><language>eng</language><ispartof>GetMobile (New York, N.Y.), 2019-05, Vol.22 (4), p.30-34</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1145_3325867_33258803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Qiu, Hang</creatorcontrib><creatorcontrib>Ahmad, Fawad</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Gruteser, Marco</creatorcontrib><creatorcontrib>Govindan, Ramesh</creatorcontrib><title>Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles</title><title>GetMobile (New York, N.Y.)</title><description>Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting conditions. To improve visibility and performance, we explore a capability called Augmented Vehicular Reality (AVR). AVR broadens the vehicle's visual horizon by enabling it to wirelessly share visual information with other nearby vehicles. We show that AVR is feasible using off-the-shelf wireless technologies, and it can qualitatively change the decisions made by autonomous vehicle path planning algorithms. Our AVR prototype achieves positioning accuracies that are within a few percentages of car lengths and lane widths, and it is optimized to process frames at 30fps.</description><issn>2375-0529</issn><issn>2375-0537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpjYBA3NNAzNDQx1Tc2NjK1MDPXA9MWBkwMnEbG5qa6BqbG5ixwtpElBwNvcXGWgYGBoamhIRBzMkg7lqbnpuaVpKYohKVmZCaX5iQWKQSlJuZkllTyMLCmJeYUp_JCaW4GfTfXEGcP3eSi_OLiotS0-IKizNzEosp4Q4N4kDPioc6IhzrDmHQdAAsfNxM</recordid><startdate>20190502</startdate><enddate>20190502</enddate><creator>Qiu, Hang</creator><creator>Ahmad, Fawad</creator><creator>Bai, Fan</creator><creator>Gruteser, Marco</creator><creator>Govindan, Ramesh</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190502</creationdate><title>Augmented Vehicular Reality</title><author>Qiu, Hang ; Ahmad, Fawad ; Bai, Fan ; Gruteser, Marco ; Govindan, Ramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_3325867_33258803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Hang</creatorcontrib><creatorcontrib>Ahmad, Fawad</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Gruteser, Marco</creatorcontrib><creatorcontrib>Govindan, Ramesh</creatorcontrib><collection>CrossRef</collection><jtitle>GetMobile (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Hang</au><au>Ahmad, Fawad</au><au>Bai, Fan</au><au>Gruteser, Marco</au><au>Govindan, Ramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles</atitle><jtitle>GetMobile (New York, N.Y.)</jtitle><date>2019-05-02</date><risdate>2019</risdate><volume>22</volume><issue>4</issue><spage>30</spage><epage>34</epage><pages>30-34</pages><issn>2375-0529</issn><eissn>2375-0537</eissn><abstract>Autonomous vehicle prototypes today come with line-of-sight depth perception sensors like 3D cameras. These 3D sensors are used for improving vehicular safety in autonomous driving, but have fundamentally limited visibility due to occlusions, sensing range, and extreme weather and lighting conditions. To improve visibility and performance, we explore a capability called Augmented Vehicular Reality (AVR). AVR broadens the vehicle's visual horizon by enabling it to wirelessly share visual information with other nearby vehicles. We show that AVR is feasible using off-the-shelf wireless technologies, and it can qualitatively change the decisions made by autonomous vehicle path planning algorithms. Our AVR prototype achieves positioning accuracies that are within a few percentages of car lengths and lane widths, and it is optimized to process frames at 30fps.</abstract><doi>10.1145/3325867.3325880</doi></addata></record>
fulltext fulltext
identifier ISSN: 2375-0529
ispartof GetMobile (New York, N.Y.), 2019-05, Vol.22 (4), p.30-34
issn 2375-0529
2375-0537
language eng
recordid cdi_crossref_primary_10_1145_3325867_3325880
source ACM Digital Library Complete
title Augmented Vehicular Reality: Enabling Extended Vision for Future Automobiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Vehicular%20Reality:%20Enabling%20Extended%20Vision%20for%20Future%20Automobiles&rft.jtitle=GetMobile%20(New%20York,%20N.Y.)&rft.au=Qiu,%20Hang&rft.date=2019-05-02&rft.volume=22&rft.issue=4&rft.spage=30&rft.epage=34&rft.pages=30-34&rft.issn=2375-0529&rft.eissn=2375-0537&rft_id=info:doi/10.1145/3325867.3325880&rft_dat=%3Ccrossref%3E10_1145_3325867_3325880%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true