Caliper: Interference Estimator for Multi-tenant Environments Sharing Architectural Resources

We introduce Caliper , a technique for accurately estimating performance interference occurring in shared servers. Caliper overcomes the limitations of prior approaches by leveraging a micro-experiment-based technique. In contrast to state-of-the-art approaches that focus on periodically pausing co-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on architecture and code optimization 2019-09, Vol.16 (3), p.1-25
Hauptverfasser: Kannan, Ram Srivatsa, Laurenzano, Michael, Ahn, Jeongseob, Mars, Jason, Tang, Lingjia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 3
container_start_page 1
container_title ACM transactions on architecture and code optimization
container_volume 16
creator Kannan, Ram Srivatsa
Laurenzano, Michael
Ahn, Jeongseob
Mars, Jason
Tang, Lingjia
description We introduce Caliper , a technique for accurately estimating performance interference occurring in shared servers. Caliper overcomes the limitations of prior approaches by leveraging a micro-experiment-based technique. In contrast to state-of-the-art approaches that focus on periodically pausing co-running applications to estimate slowdown, Caliper utilizes a strategic phase-triggered technique to capture interference due to co-location. This enables Caliper to orchestrate an accurate and low-overhead interference estimation technique that can be readily deployed in existing production systems. We evaluate Caliper for a broad spectrum of workload scenarios, demonstrating its ability to seamlessly support up to 16 applications running simultaneously and outperform the state-of-the-art approaches.
doi_str_mv 10.1145/3323090
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3323090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3323090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-3bfb5fab65c4ea9b1f65ceaea4c50cce727b1687b589ea7332116f8f56cc20cd3</originalsourceid><addsrcrecordid>eNo1zrkKAjEUheEgijs-htXovVknpQxuMGCj9ZBcE1AUJbHx7VXU6vzV4WNsgjBDlGouBBdgocX6qKQshDWi_W-ldY8Ncj4DcMsB-qxbucvpHtKIdaK75DD-7ZAdVst9tSnq3XpbLeqCsDSPQvjoVXReK5LBWY_xXcEFJ0kBUTDceNSl8aq0wZm3BVHHMipNxIGOYsim319Kt5xTiM09na4uPRuE5uNvfn7xAvh2NYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Caliper: Interference Estimator for Multi-tenant Environments Sharing Architectural Resources</title><source>ACM Digital Library</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kannan, Ram Srivatsa ; Laurenzano, Michael ; Ahn, Jeongseob ; Mars, Jason ; Tang, Lingjia</creator><creatorcontrib>Kannan, Ram Srivatsa ; Laurenzano, Michael ; Ahn, Jeongseob ; Mars, Jason ; Tang, Lingjia</creatorcontrib><description>We introduce Caliper , a technique for accurately estimating performance interference occurring in shared servers. Caliper overcomes the limitations of prior approaches by leveraging a micro-experiment-based technique. In contrast to state-of-the-art approaches that focus on periodically pausing co-running applications to estimate slowdown, Caliper utilizes a strategic phase-triggered technique to capture interference due to co-location. This enables Caliper to orchestrate an accurate and low-overhead interference estimation technique that can be readily deployed in existing production systems. We evaluate Caliper for a broad spectrum of workload scenarios, demonstrating its ability to seamlessly support up to 16 applications running simultaneously and outperform the state-of-the-art approaches.</description><identifier>ISSN: 1544-3566</identifier><identifier>EISSN: 1544-3973</identifier><identifier>DOI: 10.1145/3323090</identifier><language>eng</language><ispartof>ACM transactions on architecture and code optimization, 2019-09, Vol.16 (3), p.1-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c187t-3bfb5fab65c4ea9b1f65ceaea4c50cce727b1687b589ea7332116f8f56cc20cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kannan, Ram Srivatsa</creatorcontrib><creatorcontrib>Laurenzano, Michael</creatorcontrib><creatorcontrib>Ahn, Jeongseob</creatorcontrib><creatorcontrib>Mars, Jason</creatorcontrib><creatorcontrib>Tang, Lingjia</creatorcontrib><title>Caliper: Interference Estimator for Multi-tenant Environments Sharing Architectural Resources</title><title>ACM transactions on architecture and code optimization</title><description>We introduce Caliper , a technique for accurately estimating performance interference occurring in shared servers. Caliper overcomes the limitations of prior approaches by leveraging a micro-experiment-based technique. In contrast to state-of-the-art approaches that focus on periodically pausing co-running applications to estimate slowdown, Caliper utilizes a strategic phase-triggered technique to capture interference due to co-location. This enables Caliper to orchestrate an accurate and low-overhead interference estimation technique that can be readily deployed in existing production systems. We evaluate Caliper for a broad spectrum of workload scenarios, demonstrating its ability to seamlessly support up to 16 applications running simultaneously and outperform the state-of-the-art approaches.</description><issn>1544-3566</issn><issn>1544-3973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1zrkKAjEUheEgijs-htXovVknpQxuMGCj9ZBcE1AUJbHx7VXU6vzV4WNsgjBDlGouBBdgocX6qKQshDWi_W-ldY8Ncj4DcMsB-qxbucvpHtKIdaK75DD-7ZAdVst9tSnq3XpbLeqCsDSPQvjoVXReK5LBWY_xXcEFJ0kBUTDceNSl8aq0wZm3BVHHMipNxIGOYsim319Kt5xTiM09na4uPRuE5uNvfn7xAvh2NYc</recordid><startdate>20190930</startdate><enddate>20190930</enddate><creator>Kannan, Ram Srivatsa</creator><creator>Laurenzano, Michael</creator><creator>Ahn, Jeongseob</creator><creator>Mars, Jason</creator><creator>Tang, Lingjia</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190930</creationdate><title>Caliper</title><author>Kannan, Ram Srivatsa ; Laurenzano, Michael ; Ahn, Jeongseob ; Mars, Jason ; Tang, Lingjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-3bfb5fab65c4ea9b1f65ceaea4c50cce727b1687b589ea7332116f8f56cc20cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kannan, Ram Srivatsa</creatorcontrib><creatorcontrib>Laurenzano, Michael</creatorcontrib><creatorcontrib>Ahn, Jeongseob</creatorcontrib><creatorcontrib>Mars, Jason</creatorcontrib><creatorcontrib>Tang, Lingjia</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on architecture and code optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kannan, Ram Srivatsa</au><au>Laurenzano, Michael</au><au>Ahn, Jeongseob</au><au>Mars, Jason</au><au>Tang, Lingjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caliper: Interference Estimator for Multi-tenant Environments Sharing Architectural Resources</atitle><jtitle>ACM transactions on architecture and code optimization</jtitle><date>2019-09-30</date><risdate>2019</risdate><volume>16</volume><issue>3</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1544-3566</issn><eissn>1544-3973</eissn><abstract>We introduce Caliper , a technique for accurately estimating performance interference occurring in shared servers. Caliper overcomes the limitations of prior approaches by leveraging a micro-experiment-based technique. In contrast to state-of-the-art approaches that focus on periodically pausing co-running applications to estimate slowdown, Caliper utilizes a strategic phase-triggered technique to capture interference due to co-location. This enables Caliper to orchestrate an accurate and low-overhead interference estimation technique that can be readily deployed in existing production systems. We evaluate Caliper for a broad spectrum of workload scenarios, demonstrating its ability to seamlessly support up to 16 applications running simultaneously and outperform the state-of-the-art approaches.</abstract><doi>10.1145/3323090</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1544-3566
ispartof ACM transactions on architecture and code optimization, 2019-09, Vol.16 (3), p.1-25
issn 1544-3566
1544-3973
language eng
recordid cdi_crossref_primary_10_1145_3323090
source ACM Digital Library; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Caliper: Interference Estimator for Multi-tenant Environments Sharing Architectural Resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caliper:%20Interference%20Estimator%20for%20Multi-tenant%20Environments%20Sharing%20Architectural%20Resources&rft.jtitle=ACM%20transactions%20on%20architecture%20and%20code%20optimization&rft.au=Kannan,%20Ram%20Srivatsa&rft.date=2019-09-30&rft.volume=16&rft.issue=3&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1544-3566&rft.eissn=1544-3973&rft_id=info:doi/10.1145/3323090&rft_dat=%3Ccrossref%3E10_1145_3323090%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true