Integrating Multi-level Tag Recommendation with External Knowledge Bases for Automatic Question Answering

We focus on using natural language unstructured textual Knowledge Bases (KBs) to answer questions from community-based Question-and-Answer (Q8A) websites. We propose a novel framework that integrates multi-level tag recommendation with external KBs to retrieve the most relevant KB articles to answer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on Internet technology 2019, Vol.19 (3), p.1-22
Hauptverfasser: Lima, Eduardo, Shi, Weishi, Liu, Xumin, Yu, Qi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 3
container_start_page 1
container_title ACM transactions on Internet technology
container_volume 19
creator Lima, Eduardo
Shi, Weishi
Liu, Xumin
Yu, Qi
description We focus on using natural language unstructured textual Knowledge Bases (KBs) to answer questions from community-based Question-and-Answer (Q8A) websites. We propose a novel framework that integrates multi-level tag recommendation with external KBs to retrieve the most relevant KB articles to answer user posted questions. Different from many existing efforts that primarily rely on the Q8A sites’ own historical data (e.g., user answers), retrieving answers from authoritative external KBs (e.g., online programming documentation repositories) has the potential to provide rich information to help users better understand the problem, acquire the knowledge, and hence avoid asking similar questions in future. The proposed multi-level tag recommendation best leverages the rich tag information by first categorizing them into different semantic levels based on their usage frequencies. A post-tag co-clustering model, augmented by a two-step tag recommender, is used to predict tags at different levels for a given user posted question. A KB article retrieval component leverages the recommended multi-level tags to select the appropriate KBs and search/rank the matching articles thereof. We conduct extensive experiments using real-world data from a Q8A site and multiple external KBs to demonstrate the effectiveness of the proposed question-answering framework.
doi_str_mv 10.1145/3319528
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3319528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3319528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-e433ea9f7bfaa1e9efcf154d48b884af8d636b5eb435b7143dc9b21923afc803</originalsourceid><addsrcrecordid>eNotkMFOwzAQRC0EEqUgfsE3ToFs107iY6hKqShCoN4jx1mHoMRBtkvh72mhpxlpZt5hGLuG9BZAyDtEUHJWnLAJSJknWSrh9OARE4lKnbOLED7SFGQGOGHdykVqvY6da_nzto9d0tMX9XyjW_5GZhwGcs0-Hh3fdfGdL74jead7_uTGXU9NS_xeBwrcjp6X2zgO-7Lhr1sKf6PShR35Pf2SnVndB7o66pRtHhab-WOyflmu5uU6MQgQExKIpJXNa6s1kCJrLEjRiKIuCqFt0WSY1ZJqgbLOQWBjVD0DNUNtTZHilN38Y40fQ_Bkq0_fDdr_VJBWh4Oq40H4C6odWis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrating Multi-level Tag Recommendation with External Knowledge Bases for Automatic Question Answering</title><source>ACM Digital Library Complete</source><creator>Lima, Eduardo ; Shi, Weishi ; Liu, Xumin ; Yu, Qi</creator><creatorcontrib>Lima, Eduardo ; Shi, Weishi ; Liu, Xumin ; Yu, Qi</creatorcontrib><description>We focus on using natural language unstructured textual Knowledge Bases (KBs) to answer questions from community-based Question-and-Answer (Q8A) websites. We propose a novel framework that integrates multi-level tag recommendation with external KBs to retrieve the most relevant KB articles to answer user posted questions. Different from many existing efforts that primarily rely on the Q8A sites’ own historical data (e.g., user answers), retrieving answers from authoritative external KBs (e.g., online programming documentation repositories) has the potential to provide rich information to help users better understand the problem, acquire the knowledge, and hence avoid asking similar questions in future. The proposed multi-level tag recommendation best leverages the rich tag information by first categorizing them into different semantic levels based on their usage frequencies. A post-tag co-clustering model, augmented by a two-step tag recommender, is used to predict tags at different levels for a given user posted question. A KB article retrieval component leverages the recommended multi-level tags to select the appropriate KBs and search/rank the matching articles thereof. We conduct extensive experiments using real-world data from a Q8A site and multiple external KBs to demonstrate the effectiveness of the proposed question-answering framework.</description><identifier>ISSN: 1533-5399</identifier><identifier>EISSN: 1557-6051</identifier><identifier>DOI: 10.1145/3319528</identifier><language>eng</language><ispartof>ACM transactions on Internet technology, 2019, Vol.19 (3), p.1-22</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-e433ea9f7bfaa1e9efcf154d48b884af8d636b5eb435b7143dc9b21923afc803</citedby><cites>FETCH-LOGICAL-c311t-e433ea9f7bfaa1e9efcf154d48b884af8d636b5eb435b7143dc9b21923afc803</cites><orcidid>0000-0002-6109-4851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Lima, Eduardo</creatorcontrib><creatorcontrib>Shi, Weishi</creatorcontrib><creatorcontrib>Liu, Xumin</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><title>Integrating Multi-level Tag Recommendation with External Knowledge Bases for Automatic Question Answering</title><title>ACM transactions on Internet technology</title><description>We focus on using natural language unstructured textual Knowledge Bases (KBs) to answer questions from community-based Question-and-Answer (Q8A) websites. We propose a novel framework that integrates multi-level tag recommendation with external KBs to retrieve the most relevant KB articles to answer user posted questions. Different from many existing efforts that primarily rely on the Q8A sites’ own historical data (e.g., user answers), retrieving answers from authoritative external KBs (e.g., online programming documentation repositories) has the potential to provide rich information to help users better understand the problem, acquire the knowledge, and hence avoid asking similar questions in future. The proposed multi-level tag recommendation best leverages the rich tag information by first categorizing them into different semantic levels based on their usage frequencies. A post-tag co-clustering model, augmented by a two-step tag recommender, is used to predict tags at different levels for a given user posted question. A KB article retrieval component leverages the recommended multi-level tags to select the appropriate KBs and search/rank the matching articles thereof. We conduct extensive experiments using real-world data from a Q8A site and multiple external KBs to demonstrate the effectiveness of the proposed question-answering framework.</description><issn>1533-5399</issn><issn>1557-6051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkMFOwzAQRC0EEqUgfsE3ToFs107iY6hKqShCoN4jx1mHoMRBtkvh72mhpxlpZt5hGLuG9BZAyDtEUHJWnLAJSJknWSrh9OARE4lKnbOLED7SFGQGOGHdykVqvY6da_nzto9d0tMX9XyjW_5GZhwGcs0-Hh3fdfGdL74jead7_uTGXU9NS_xeBwrcjp6X2zgO-7Lhr1sKf6PShR35Pf2SnVndB7o66pRtHhab-WOyflmu5uU6MQgQExKIpJXNa6s1kCJrLEjRiKIuCqFt0WSY1ZJqgbLOQWBjVD0DNUNtTZHilN38Y40fQ_Bkq0_fDdr_VJBWh4Oq40H4C6odWis</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Lima, Eduardo</creator><creator>Shi, Weishi</creator><creator>Liu, Xumin</creator><creator>Yu, Qi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6109-4851</orcidid></search><sort><creationdate>2019</creationdate><title>Integrating Multi-level Tag Recommendation with External Knowledge Bases for Automatic Question Answering</title><author>Lima, Eduardo ; Shi, Weishi ; Liu, Xumin ; Yu, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-e433ea9f7bfaa1e9efcf154d48b884af8d636b5eb435b7143dc9b21923afc803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Eduardo</creatorcontrib><creatorcontrib>Shi, Weishi</creatorcontrib><creatorcontrib>Liu, Xumin</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on Internet technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Eduardo</au><au>Shi, Weishi</au><au>Liu, Xumin</au><au>Yu, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Multi-level Tag Recommendation with External Knowledge Bases for Automatic Question Answering</atitle><jtitle>ACM transactions on Internet technology</jtitle><date>2019</date><risdate>2019</risdate><volume>19</volume><issue>3</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>1533-5399</issn><eissn>1557-6051</eissn><abstract>We focus on using natural language unstructured textual Knowledge Bases (KBs) to answer questions from community-based Question-and-Answer (Q8A) websites. We propose a novel framework that integrates multi-level tag recommendation with external KBs to retrieve the most relevant KB articles to answer user posted questions. Different from many existing efforts that primarily rely on the Q8A sites’ own historical data (e.g., user answers), retrieving answers from authoritative external KBs (e.g., online programming documentation repositories) has the potential to provide rich information to help users better understand the problem, acquire the knowledge, and hence avoid asking similar questions in future. The proposed multi-level tag recommendation best leverages the rich tag information by first categorizing them into different semantic levels based on their usage frequencies. A post-tag co-clustering model, augmented by a two-step tag recommender, is used to predict tags at different levels for a given user posted question. A KB article retrieval component leverages the recommended multi-level tags to select the appropriate KBs and search/rank the matching articles thereof. We conduct extensive experiments using real-world data from a Q8A site and multiple external KBs to demonstrate the effectiveness of the proposed question-answering framework.</abstract><doi>10.1145/3319528</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6109-4851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1533-5399
ispartof ACM transactions on Internet technology, 2019, Vol.19 (3), p.1-22
issn 1533-5399
1557-6051
language eng
recordid cdi_crossref_primary_10_1145_3319528
source ACM Digital Library Complete
title Integrating Multi-level Tag Recommendation with External Knowledge Bases for Automatic Question Answering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Multi-level%20Tag%20Recommendation%20with%20External%20Knowledge%20Bases%20for%20Automatic%20Question%20Answering&rft.jtitle=ACM%20transactions%20on%20Internet%20technology&rft.au=Lima,%20Eduardo&rft.date=2019&rft.volume=19&rft.issue=3&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=1533-5399&rft.eissn=1557-6051&rft_id=info:doi/10.1145/3319528&rft_dat=%3Ccrossref%3E10_1145_3319528%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true