CURD: a dynamic CUDA race detector

As GPUs have become an integral part of nearly every pro- cessor, GPU programming has become increasingly popular. GPU programming requires a combination of extreme levels of parallelism and low-level programming, making it easy for concurrency bugs such as data races to arise. These con- currency b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGPLAN notices 2018-12, Vol.53 (4), p.390-403
Hauptverfasser: Peng, Yuanfeng, Grover, Vinod, Devietti, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue 4
container_start_page 390
container_title SIGPLAN notices
container_volume 53
creator Peng, Yuanfeng
Grover, Vinod
Devietti, Joseph
description As GPUs have become an integral part of nearly every pro- cessor, GPU programming has become increasingly popular. GPU programming requires a combination of extreme levels of parallelism and low-level programming, making it easy for concurrency bugs such as data races to arise. These con- currency bugs can be extremely subtle and di cult to debug due to the massive numbers of threads running concurrently on a modern GPU. While some tools exist to detect data races in GPU pro- grams, they are often prohibitively slow or focused only on a small class of data races in shared memory. Compared to prior work, our race detector, CURD, can detect data races precisely on both shared and global memory, selects an appropriate race detection algorithm based on the synchronization used in a program, and utilizes efficient compiler instrumentation to reduce performance overheads. Across 53 benchmarks, we find that using CURD incurs an aver- age slowdown of just 2.88x over native execution. CURD is 2.1x faster than Nvidia’s CUDA-Racecheck race detector, de- spite detecting a much broader class of races. CURD finds 35 races across our benchmarks, including bugs in established benchmark suites and in sample programs from Nvidia.
doi_str_mv 10.1145/3296979.3192368
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3296979_3192368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3192368</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1468-44fbbbdf6ecfaab6e35d378a00216b6f7142b05471814bd726b73c1d78e2e2c93</originalsourceid><addsrcrecordid>eNo9jztLA0EUhQdRcI3WgtViP8m98167sPEFgUBw62GeEHGNzKTJv1fJanWKc74DHyG3CHNEIRecdarT3Zxjx7gyZ6RBKQ1FVHBOGuCKUeQCLslVre8AwIGZhtz3w3b10Lo2Hj_duAttP6yWbXEhtTEdUjjsyzW5yO6jppspZ2R4enzrX-h68_zaL9fUoVCGCpG99zGrFLJzXiUuI9fGATBUXmWNgnmQQqNB4aNmymseMGqTWGKh4zOyOP2Gsq-1pGy_ym505WgR7K-inRTtpPhD3J0IF8b_8V_5DbSmSR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CURD: a dynamic CUDA race detector</title><source>ACM Digital Library</source><creator>Peng, Yuanfeng ; Grover, Vinod ; Devietti, Joseph</creator><creatorcontrib>Peng, Yuanfeng ; Grover, Vinod ; Devietti, Joseph</creatorcontrib><description>As GPUs have become an integral part of nearly every pro- cessor, GPU programming has become increasingly popular. GPU programming requires a combination of extreme levels of parallelism and low-level programming, making it easy for concurrency bugs such as data races to arise. These con- currency bugs can be extremely subtle and di cult to debug due to the massive numbers of threads running concurrently on a modern GPU. While some tools exist to detect data races in GPU pro- grams, they are often prohibitively slow or focused only on a small class of data races in shared memory. Compared to prior work, our race detector, CURD, can detect data races precisely on both shared and global memory, selects an appropriate race detection algorithm based on the synchronization used in a program, and utilizes efficient compiler instrumentation to reduce performance overheads. Across 53 benchmarks, we find that using CURD incurs an aver- age slowdown of just 2.88x over native execution. CURD is 2.1x faster than Nvidia’s CUDA-Racecheck race detector, de- spite detecting a much broader class of races. CURD finds 35 races across our benchmarks, including bugs in established benchmark suites and in sample programs from Nvidia.</description><identifier>ISSN: 0362-1340</identifier><identifier>EISSN: 1558-1160</identifier><identifier>DOI: 10.1145/3296979.3192368</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Compilers ; Concurrent programming languages ; General programming languages ; Language types ; Program analysis ; Program reasoning ; Runtime environments ; Semantics and reasoning ; Software and its engineering ; Software creation and management ; Software defect analysis ; Software notations and tools ; Software verification and validation ; Theory of computation</subject><ispartof>SIGPLAN notices, 2018-12, Vol.53 (4), p.390-403</ispartof><rights>ACM</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1468-44fbbbdf6ecfaab6e35d378a00216b6f7142b05471814bd726b73c1d78e2e2c93</citedby><cites>FETCH-LOGICAL-a1468-44fbbbdf6ecfaab6e35d378a00216b6f7142b05471814bd726b73c1d78e2e2c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3296979.3192368$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Peng, Yuanfeng</creatorcontrib><creatorcontrib>Grover, Vinod</creatorcontrib><creatorcontrib>Devietti, Joseph</creatorcontrib><title>CURD: a dynamic CUDA race detector</title><title>SIGPLAN notices</title><addtitle>ACM SIGPLAN</addtitle><description>As GPUs have become an integral part of nearly every pro- cessor, GPU programming has become increasingly popular. GPU programming requires a combination of extreme levels of parallelism and low-level programming, making it easy for concurrency bugs such as data races to arise. These con- currency bugs can be extremely subtle and di cult to debug due to the massive numbers of threads running concurrently on a modern GPU. While some tools exist to detect data races in GPU pro- grams, they are often prohibitively slow or focused only on a small class of data races in shared memory. Compared to prior work, our race detector, CURD, can detect data races precisely on both shared and global memory, selects an appropriate race detection algorithm based on the synchronization used in a program, and utilizes efficient compiler instrumentation to reduce performance overheads. Across 53 benchmarks, we find that using CURD incurs an aver- age slowdown of just 2.88x over native execution. CURD is 2.1x faster than Nvidia’s CUDA-Racecheck race detector, de- spite detecting a much broader class of races. CURD finds 35 races across our benchmarks, including bugs in established benchmark suites and in sample programs from Nvidia.</description><subject>Compilers</subject><subject>Concurrent programming languages</subject><subject>General programming languages</subject><subject>Language types</subject><subject>Program analysis</subject><subject>Program reasoning</subject><subject>Runtime environments</subject><subject>Semantics and reasoning</subject><subject>Software and its engineering</subject><subject>Software creation and management</subject><subject>Software defect analysis</subject><subject>Software notations and tools</subject><subject>Software verification and validation</subject><subject>Theory of computation</subject><issn>0362-1340</issn><issn>1558-1160</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9jztLA0EUhQdRcI3WgtViP8m98167sPEFgUBw62GeEHGNzKTJv1fJanWKc74DHyG3CHNEIRecdarT3Zxjx7gyZ6RBKQ1FVHBOGuCKUeQCLslVre8AwIGZhtz3w3b10Lo2Hj_duAttP6yWbXEhtTEdUjjsyzW5yO6jppspZ2R4enzrX-h68_zaL9fUoVCGCpG99zGrFLJzXiUuI9fGATBUXmWNgnmQQqNB4aNmymseMGqTWGKh4zOyOP2Gsq-1pGy_ym505WgR7K-inRTtpPhD3J0IF8b_8V_5DbSmSR4</recordid><startdate>20181202</startdate><enddate>20181202</enddate><creator>Peng, Yuanfeng</creator><creator>Grover, Vinod</creator><creator>Devietti, Joseph</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181202</creationdate><title>CURD: a dynamic CUDA race detector</title><author>Peng, Yuanfeng ; Grover, Vinod ; Devietti, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1468-44fbbbdf6ecfaab6e35d378a00216b6f7142b05471814bd726b73c1d78e2e2c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Compilers</topic><topic>Concurrent programming languages</topic><topic>General programming languages</topic><topic>Language types</topic><topic>Program analysis</topic><topic>Program reasoning</topic><topic>Runtime environments</topic><topic>Semantics and reasoning</topic><topic>Software and its engineering</topic><topic>Software creation and management</topic><topic>Software defect analysis</topic><topic>Software notations and tools</topic><topic>Software verification and validation</topic><topic>Theory of computation</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yuanfeng</creatorcontrib><creatorcontrib>Grover, Vinod</creatorcontrib><creatorcontrib>Devietti, Joseph</creatorcontrib><collection>CrossRef</collection><jtitle>SIGPLAN notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yuanfeng</au><au>Grover, Vinod</au><au>Devietti, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CURD: a dynamic CUDA race detector</atitle><jtitle>SIGPLAN notices</jtitle><stitle>ACM SIGPLAN</stitle><date>2018-12-02</date><risdate>2018</risdate><volume>53</volume><issue>4</issue><spage>390</spage><epage>403</epage><pages>390-403</pages><issn>0362-1340</issn><eissn>1558-1160</eissn><abstract>As GPUs have become an integral part of nearly every pro- cessor, GPU programming has become increasingly popular. GPU programming requires a combination of extreme levels of parallelism and low-level programming, making it easy for concurrency bugs such as data races to arise. These con- currency bugs can be extremely subtle and di cult to debug due to the massive numbers of threads running concurrently on a modern GPU. While some tools exist to detect data races in GPU pro- grams, they are often prohibitively slow or focused only on a small class of data races in shared memory. Compared to prior work, our race detector, CURD, can detect data races precisely on both shared and global memory, selects an appropriate race detection algorithm based on the synchronization used in a program, and utilizes efficient compiler instrumentation to reduce performance overheads. Across 53 benchmarks, we find that using CURD incurs an aver- age slowdown of just 2.88x over native execution. CURD is 2.1x faster than Nvidia’s CUDA-Racecheck race detector, de- spite detecting a much broader class of races. CURD finds 35 races across our benchmarks, including bugs in established benchmark suites and in sample programs from Nvidia.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3296979.3192368</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-1340
ispartof SIGPLAN notices, 2018-12, Vol.53 (4), p.390-403
issn 0362-1340
1558-1160
language eng
recordid cdi_crossref_primary_10_1145_3296979_3192368
source ACM Digital Library
subjects Compilers
Concurrent programming languages
General programming languages
Language types
Program analysis
Program reasoning
Runtime environments
Semantics and reasoning
Software and its engineering
Software creation and management
Software defect analysis
Software notations and tools
Software verification and validation
Theory of computation
title CURD: a dynamic CUDA race detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CURD:%20a%20dynamic%20CUDA%20race%20detector&rft.jtitle=SIGPLAN%20notices&rft.au=Peng,%20Yuanfeng&rft.date=2018-12-02&rft.volume=53&rft.issue=4&rft.spage=390&rft.epage=403&rft.pages=390-403&rft.issn=0362-1340&rft.eissn=1558-1160&rft_id=info:doi/10.1145/3296979.3192368&rft_dat=%3Cacm_cross%3E3192368%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true