An Efficient Alternating Newton Method for Learning Factorization Machines
To date, factorization machines (FMs) have emerged as a powerful model in many applications. In this work, we study the training of FM with the logistic loss for binary classification, which is a nonlinear extension of the linear model with the logistic loss (i.e., logistic regression). For the trai...
Gespeichert in:
Veröffentlicht in: | ACM transactions on intelligent systems and technology 2018-11, Vol.9 (6), p.1-31 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!