Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension

We formulate the conditional Kolmogorov complexity of x given y at precision r , where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways; (1) We prove a point-to-set principle that enables one to use the (relativized, constructive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on computation theory 2018-06, Vol.10 (2), p.1-22
Hauptverfasser: Lutz, Jack H., Lutz, Neil
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 2
container_start_page 1
container_title ACM transactions on computation theory
container_volume 10
creator Lutz, Jack H.
Lutz, Neil
description We formulate the conditional Kolmogorov complexity of x given y at precision r , where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways; (1) We prove a point-to-set principle that enables one to use the (relativized, constructive) dimension of a single point in a set E in a Euclidean space to establish a lower bound on the (classical) Hausdorff dimension of E . We then use this principle, together with conditional Kolmogorov complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971, says that every plane set containing a unit line segment in every direction has Hausdorff dimension 2. (2)We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and upper conditional dimensions dim( x | y ) and Dim( x | y ) of x given y , where x and y are points in Euclidean spaces. Intuitively, these are the lower and upper asymptotic algorithmic information densities of x conditioned on the information in y . We prove that these conditional dimensions are robust and that they have the correct information-theoretic relationships with the well-studied dimensions dim( x ) and Dim( x ) and the mutual dimensions mdim( x : y ) and Mdim( x : y ).
doi_str_mv 10.1145/3201783
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3201783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3201783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-552df38914e8071e0b9fd560177b54d83c5da39f49b36c607cb65d3b8968cc913</originalsourceid><addsrcrecordid>eNo9j81KAzEYRYMoWKv4Ctm56WiSL8kkyzK2WiwoqOshkx-NzmQkmU3f3haLq3sWl8s9CF1TckspF3fACK0VnKAZ1ZxVwCU7_WfBz9FFKV-ESAkMZmi17D_GHKfPIVq8SWHMg5nimBb4pTfJ4yfz7XcGv_qpLLBJDjdjcvHQMD2-j4NPZc-X6CyYvvirY87R-3r11jxW2-eHTbPcVpYJNVVCMBdAacq9IjX1pNPBCbn_W3eCOwVWOAM6cN2BtJLUtpPCQae0VNZqCnN087dr81hK9qH9yXEweddS0h7s26M9_AJClUrf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension</title><source>ACM Digital Library Complete</source><creator>Lutz, Jack H. ; Lutz, Neil</creator><creatorcontrib>Lutz, Jack H. ; Lutz, Neil</creatorcontrib><description>We formulate the conditional Kolmogorov complexity of x given y at precision r , where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways; (1) We prove a point-to-set principle that enables one to use the (relativized, constructive) dimension of a single point in a set E in a Euclidean space to establish a lower bound on the (classical) Hausdorff dimension of E . We then use this principle, together with conditional Kolmogorov complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971, says that every plane set containing a unit line segment in every direction has Hausdorff dimension 2. (2)We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and upper conditional dimensions dim( x | y ) and Dim( x | y ) of x given y , where x and y are points in Euclidean spaces. Intuitively, these are the lower and upper asymptotic algorithmic information densities of x conditioned on the information in y . We prove that these conditional dimensions are robust and that they have the correct information-theoretic relationships with the well-studied dimensions dim( x ) and Dim( x ) and the mutual dimensions mdim( x : y ) and Mdim( x : y ).</description><identifier>ISSN: 1942-3454</identifier><identifier>EISSN: 1942-3462</identifier><identifier>DOI: 10.1145/3201783</identifier><language>eng</language><ispartof>ACM transactions on computation theory, 2018-06, Vol.10 (2), p.1-22</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-552df38914e8071e0b9fd560177b54d83c5da39f49b36c607cb65d3b8968cc913</citedby><cites>FETCH-LOGICAL-c258t-552df38914e8071e0b9fd560177b54d83c5da39f49b36c607cb65d3b8968cc913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lutz, Jack H.</creatorcontrib><creatorcontrib>Lutz, Neil</creatorcontrib><title>Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension</title><title>ACM transactions on computation theory</title><description>We formulate the conditional Kolmogorov complexity of x given y at precision r , where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways; (1) We prove a point-to-set principle that enables one to use the (relativized, constructive) dimension of a single point in a set E in a Euclidean space to establish a lower bound on the (classical) Hausdorff dimension of E . We then use this principle, together with conditional Kolmogorov complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971, says that every plane set containing a unit line segment in every direction has Hausdorff dimension 2. (2)We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and upper conditional dimensions dim( x | y ) and Dim( x | y ) of x given y , where x and y are points in Euclidean spaces. Intuitively, these are the lower and upper asymptotic algorithmic information densities of x conditioned on the information in y . We prove that these conditional dimensions are robust and that they have the correct information-theoretic relationships with the well-studied dimensions dim( x ) and Dim( x ) and the mutual dimensions mdim( x : y ) and Mdim( x : y ).</description><issn>1942-3454</issn><issn>1942-3462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9j81KAzEYRYMoWKv4Ctm56WiSL8kkyzK2WiwoqOshkx-NzmQkmU3f3haLq3sWl8s9CF1TckspF3fACK0VnKAZ1ZxVwCU7_WfBz9FFKV-ESAkMZmi17D_GHKfPIVq8SWHMg5nimBb4pTfJ4yfz7XcGv_qpLLBJDjdjcvHQMD2-j4NPZc-X6CyYvvirY87R-3r11jxW2-eHTbPcVpYJNVVCMBdAacq9IjX1pNPBCbn_W3eCOwVWOAM6cN2BtJLUtpPCQae0VNZqCnN087dr81hK9qH9yXEweddS0h7s26M9_AJClUrf</recordid><startdate>20180630</startdate><enddate>20180630</enddate><creator>Lutz, Jack H.</creator><creator>Lutz, Neil</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180630</creationdate><title>Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension</title><author>Lutz, Jack H. ; Lutz, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-552df38914e8071e0b9fd560177b54d83c5da39f49b36c607cb65d3b8968cc913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutz, Jack H.</creatorcontrib><creatorcontrib>Lutz, Neil</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutz, Jack H.</au><au>Lutz, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension</atitle><jtitle>ACM transactions on computation theory</jtitle><date>2018-06-30</date><risdate>2018</risdate><volume>10</volume><issue>2</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>1942-3454</issn><eissn>1942-3462</eissn><abstract>We formulate the conditional Kolmogorov complexity of x given y at precision r , where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways; (1) We prove a point-to-set principle that enables one to use the (relativized, constructive) dimension of a single point in a set E in a Euclidean space to establish a lower bound on the (classical) Hausdorff dimension of E . We then use this principle, together with conditional Kolmogorov complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971, says that every plane set containing a unit line segment in every direction has Hausdorff dimension 2. (2)We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and upper conditional dimensions dim( x | y ) and Dim( x | y ) of x given y , where x and y are points in Euclidean spaces. Intuitively, these are the lower and upper asymptotic algorithmic information densities of x conditioned on the information in y . We prove that these conditional dimensions are robust and that they have the correct information-theoretic relationships with the well-studied dimensions dim( x ) and Dim( x ) and the mutual dimensions mdim( x : y ) and Mdim( x : y ).</abstract><doi>10.1145/3201783</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-3454
ispartof ACM transactions on computation theory, 2018-06, Vol.10 (2), p.1-22
issn 1942-3454
1942-3462
language eng
recordid cdi_crossref_primary_10_1145_3201783
source ACM Digital Library Complete
title Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithmic%20Information,%20Plane%20Kakeya%20Sets,%20and%20Conditional%20Dimension&rft.jtitle=ACM%20transactions%20on%20computation%20theory&rft.au=Lutz,%20Jack%20H.&rft.date=2018-06-30&rft.volume=10&rft.issue=2&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=1942-3454&rft.eissn=1942-3462&rft_id=info:doi/10.1145/3201783&rft_dat=%3Ccrossref%3E10_1145_3201783%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true