Physical simulation of environmentally induced thin shell deformation

We present a physically accurate low-order elastic shell model that incorporates active material response to dynamically changing stimuli such as heat, moisture, and growth. Our continuous formulation of the geometrically non-linear elastic energy derives from the principles of differential geometry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2018-08, Vol.37 (4), p.1-13
Hauptverfasser: Chen, Hsiao-Yu, Sastry, Arnav, van Rees, Wim M., Vouga, Etienne
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 4
container_start_page 1
container_title ACM transactions on graphics
container_volume 37
creator Chen, Hsiao-Yu
Sastry, Arnav
van Rees, Wim M.
Vouga, Etienne
description We present a physically accurate low-order elastic shell model that incorporates active material response to dynamically changing stimuli such as heat, moisture, and growth. Our continuous formulation of the geometrically non-linear elastic energy derives from the principles of differential geometry, and as such naturally incorporates shell thickness, non-zero rest curvature, and physical material properties. By modeling the environmental stimulus as local, dynamic changes in the rest metric of the material, we are able to solve for the corresponding shape changes by integrating the equations of motions given this non-Euclidean rest state. We present models for differential growth and shrinking due to moisture and temperature gradients along and across the surface, and incorporate anisotropic growth by defining an intrinsic machine direction within the material. Comparisons with experiments and volumetric finite elements show that our simulations achieve excellent qualitative and quantitative agreement. By combining the reduced-order shell theory with appropriate physical models, our approach accurately captures all the physical phenomena while avoiding expensive volumetric discretization of the shell volume.
doi_str_mv 10.1145/3197517.3201395
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3197517_3201395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3197517_3201395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-c62ca39ad733eb09f1a69c218ab133d2f9d7057d0a28ed55f262229083b43caa3</originalsourceid><addsrcrecordid>eNot0E1LxDAUheEgCtbRtdv8gc7cm9s0zVKG8QMGdKHrkuaDRtJWmo7Qfy_qrM7qPYuHsXuELWIld4RaSVRbEoCk5QUrUEpVKqqbS1aAIiiBAK_ZTc6fAFBXVV2ww1u_5mhN4jkOp2SWOI18CtyP33GexsGPi0lp5XF0J-sdX_o48tz7lLjzYZqHv-KWXQWTsr8774Z9PB7e98_l8fXpZf9wLK2ocCltLawhbZwi8h3ogKbWVmBjOiRyIminQCoHRjTeSRlELYTQ0FBXkTWGNmz3_2vnKefZh_ZrjoOZ1xah_VVozwrtWYF-ALPHUCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physical simulation of environmentally induced thin shell deformation</title><source>ACM Digital Library Complete</source><creator>Chen, Hsiao-Yu ; Sastry, Arnav ; van Rees, Wim M. ; Vouga, Etienne</creator><creatorcontrib>Chen, Hsiao-Yu ; Sastry, Arnav ; van Rees, Wim M. ; Vouga, Etienne</creatorcontrib><description>We present a physically accurate low-order elastic shell model that incorporates active material response to dynamically changing stimuli such as heat, moisture, and growth. Our continuous formulation of the geometrically non-linear elastic energy derives from the principles of differential geometry, and as such naturally incorporates shell thickness, non-zero rest curvature, and physical material properties. By modeling the environmental stimulus as local, dynamic changes in the rest metric of the material, we are able to solve for the corresponding shape changes by integrating the equations of motions given this non-Euclidean rest state. We present models for differential growth and shrinking due to moisture and temperature gradients along and across the surface, and incorporate anisotropic growth by defining an intrinsic machine direction within the material. Comparisons with experiments and volumetric finite elements show that our simulations achieve excellent qualitative and quantitative agreement. By combining the reduced-order shell theory with appropriate physical models, our approach accurately captures all the physical phenomena while avoiding expensive volumetric discretization of the shell volume.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3197517.3201395</identifier><language>eng</language><ispartof>ACM transactions on graphics, 2018-08, Vol.37 (4), p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-c62ca39ad733eb09f1a69c218ab133d2f9d7057d0a28ed55f262229083b43caa3</citedby><cites>FETCH-LOGICAL-c241t-c62ca39ad733eb09f1a69c218ab133d2f9d7057d0a28ed55f262229083b43caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Hsiao-Yu</creatorcontrib><creatorcontrib>Sastry, Arnav</creatorcontrib><creatorcontrib>van Rees, Wim M.</creatorcontrib><creatorcontrib>Vouga, Etienne</creatorcontrib><title>Physical simulation of environmentally induced thin shell deformation</title><title>ACM transactions on graphics</title><description>We present a physically accurate low-order elastic shell model that incorporates active material response to dynamically changing stimuli such as heat, moisture, and growth. Our continuous formulation of the geometrically non-linear elastic energy derives from the principles of differential geometry, and as such naturally incorporates shell thickness, non-zero rest curvature, and physical material properties. By modeling the environmental stimulus as local, dynamic changes in the rest metric of the material, we are able to solve for the corresponding shape changes by integrating the equations of motions given this non-Euclidean rest state. We present models for differential growth and shrinking due to moisture and temperature gradients along and across the surface, and incorporate anisotropic growth by defining an intrinsic machine direction within the material. Comparisons with experiments and volumetric finite elements show that our simulations achieve excellent qualitative and quantitative agreement. By combining the reduced-order shell theory with appropriate physical models, our approach accurately captures all the physical phenomena while avoiding expensive volumetric discretization of the shell volume.</description><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNot0E1LxDAUheEgCtbRtdv8gc7cm9s0zVKG8QMGdKHrkuaDRtJWmo7Qfy_qrM7qPYuHsXuELWIld4RaSVRbEoCk5QUrUEpVKqqbS1aAIiiBAK_ZTc6fAFBXVV2ww1u_5mhN4jkOp2SWOI18CtyP33GexsGPi0lp5XF0J-sdX_o48tz7lLjzYZqHv-KWXQWTsr8774Z9PB7e98_l8fXpZf9wLK2ocCltLawhbZwi8h3ogKbWVmBjOiRyIminQCoHRjTeSRlELYTQ0FBXkTWGNmz3_2vnKefZh_ZrjoOZ1xah_VVozwrtWYF-ALPHUCY</recordid><startdate>20180831</startdate><enddate>20180831</enddate><creator>Chen, Hsiao-Yu</creator><creator>Sastry, Arnav</creator><creator>van Rees, Wim M.</creator><creator>Vouga, Etienne</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180831</creationdate><title>Physical simulation of environmentally induced thin shell deformation</title><author>Chen, Hsiao-Yu ; Sastry, Arnav ; van Rees, Wim M. ; Vouga, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-c62ca39ad733eb09f1a69c218ab133d2f9d7057d0a28ed55f262229083b43caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hsiao-Yu</creatorcontrib><creatorcontrib>Sastry, Arnav</creatorcontrib><creatorcontrib>van Rees, Wim M.</creatorcontrib><creatorcontrib>Vouga, Etienne</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hsiao-Yu</au><au>Sastry, Arnav</au><au>van Rees, Wim M.</au><au>Vouga, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical simulation of environmentally induced thin shell deformation</atitle><jtitle>ACM transactions on graphics</jtitle><date>2018-08-31</date><risdate>2018</risdate><volume>37</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We present a physically accurate low-order elastic shell model that incorporates active material response to dynamically changing stimuli such as heat, moisture, and growth. Our continuous formulation of the geometrically non-linear elastic energy derives from the principles of differential geometry, and as such naturally incorporates shell thickness, non-zero rest curvature, and physical material properties. By modeling the environmental stimulus as local, dynamic changes in the rest metric of the material, we are able to solve for the corresponding shape changes by integrating the equations of motions given this non-Euclidean rest state. We present models for differential growth and shrinking due to moisture and temperature gradients along and across the surface, and incorporate anisotropic growth by defining an intrinsic machine direction within the material. Comparisons with experiments and volumetric finite elements show that our simulations achieve excellent qualitative and quantitative agreement. By combining the reduced-order shell theory with appropriate physical models, our approach accurately captures all the physical phenomena while avoiding expensive volumetric discretization of the shell volume.</abstract><doi>10.1145/3197517.3201395</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2018-08, Vol.37 (4), p.1-13
issn 0730-0301
1557-7368
language eng
recordid cdi_crossref_primary_10_1145_3197517_3201395
source ACM Digital Library Complete
title Physical simulation of environmentally induced thin shell deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20simulation%20of%20environmentally%20induced%20thin%20shell%20deformation&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Chen,%20Hsiao-Yu&rft.date=2018-08-31&rft.volume=37&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3197517.3201395&rft_dat=%3Ccrossref%3E10_1145_3197517_3201395%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true