Denotational validation of higher-order Bayesian inference

We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages 2018-01, Vol.2 (POPL), p.1-29
Hauptverfasser: Ścibior, Adam, Kammar, Ohad, Vákár, Matthijs, Staton, Sam, Yang, Hongseok, Cai, Yufei, Ostermann, Klaus, Moss, Sean K., Heunen, Chris, Ghahramani, Zoubin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue POPL
container_start_page 1
container_title Proceedings of ACM on programming languages
container_volume 2
creator Ścibior, Adam
Kammar, Ohad
Vákár, Matthijs
Staton, Sam
Yang, Hongseok
Cai, Yufei
Ostermann, Klaus
Moss, Sean K.
Heunen, Chris
Ghahramani, Zoubin
description We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.
doi_str_mv 10.1145/3158148
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3158148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3158148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-10c07ef21700dafda9913061f7a16c8459b3bcbd7fd18198c423939cc0e630e93</originalsourceid><addsrcrecordid>eNpNj8FKxDAURYMoOIyDv5Cdq-p7fWmTuNPRUWHAja5Lmrw4kdpKUoT5e1Fn4ercs7lwhDhHuERUzRVhY1CZI7GolW4qVDUe_9unYlXKOwCgJWXILsT1HY_T7OY0jW6QX25I4VfkFOUuve04V1MOnOWt23NJbpRpjJx59HwmTqIbCq8OXIrXzf3L-rHaPj88rW-2ladazRWCB82xRg0QXAzOWiRoMWqHrTeqsT31vg86BjRojVc1WbLeA7cEbGkpLv5-fZ5KyRy7z5w-XN53CN1PdXeopm-9kEhq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Denotational validation of higher-order Bayesian inference</title><source>ACM Digital Library Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ścibior, Adam ; Kammar, Ohad ; Vákár, Matthijs ; Staton, Sam ; Yang, Hongseok ; Cai, Yufei ; Ostermann, Klaus ; Moss, Sean K. ; Heunen, Chris ; Ghahramani, Zoubin</creator><creatorcontrib>Ścibior, Adam ; Kammar, Ohad ; Vákár, Matthijs ; Staton, Sam ; Yang, Hongseok ; Cai, Yufei ; Ostermann, Klaus ; Moss, Sean K. ; Heunen, Chris ; Ghahramani, Zoubin</creatorcontrib><description>We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.</description><identifier>ISSN: 2475-1421</identifier><identifier>EISSN: 2475-1421</identifier><identifier>DOI: 10.1145/3158148</identifier><language>eng</language><ispartof>Proceedings of ACM on programming languages, 2018-01, Vol.2 (POPL), p.1-29</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-10c07ef21700dafda9913061f7a16c8459b3bcbd7fd18198c423939cc0e630e93</citedby><cites>FETCH-LOGICAL-c324t-10c07ef21700dafda9913061f7a16c8459b3bcbd7fd18198c423939cc0e630e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ścibior, Adam</creatorcontrib><creatorcontrib>Kammar, Ohad</creatorcontrib><creatorcontrib>Vákár, Matthijs</creatorcontrib><creatorcontrib>Staton, Sam</creatorcontrib><creatorcontrib>Yang, Hongseok</creatorcontrib><creatorcontrib>Cai, Yufei</creatorcontrib><creatorcontrib>Ostermann, Klaus</creatorcontrib><creatorcontrib>Moss, Sean K.</creatorcontrib><creatorcontrib>Heunen, Chris</creatorcontrib><creatorcontrib>Ghahramani, Zoubin</creatorcontrib><title>Denotational validation of higher-order Bayesian inference</title><title>Proceedings of ACM on programming languages</title><description>We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.</description><issn>2475-1421</issn><issn>2475-1421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNj8FKxDAURYMoOIyDv5Cdq-p7fWmTuNPRUWHAja5Lmrw4kdpKUoT5e1Fn4ercs7lwhDhHuERUzRVhY1CZI7GolW4qVDUe_9unYlXKOwCgJWXILsT1HY_T7OY0jW6QX25I4VfkFOUuve04V1MOnOWt23NJbpRpjJx59HwmTqIbCq8OXIrXzf3L-rHaPj88rW-2ladazRWCB82xRg0QXAzOWiRoMWqHrTeqsT31vg86BjRojVc1WbLeA7cEbGkpLv5-fZ5KyRy7z5w-XN53CN1PdXeopm-9kEhq</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ścibior, Adam</creator><creator>Kammar, Ohad</creator><creator>Vákár, Matthijs</creator><creator>Staton, Sam</creator><creator>Yang, Hongseok</creator><creator>Cai, Yufei</creator><creator>Ostermann, Klaus</creator><creator>Moss, Sean K.</creator><creator>Heunen, Chris</creator><creator>Ghahramani, Zoubin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>Denotational validation of higher-order Bayesian inference</title><author>Ścibior, Adam ; Kammar, Ohad ; Vákár, Matthijs ; Staton, Sam ; Yang, Hongseok ; Cai, Yufei ; Ostermann, Klaus ; Moss, Sean K. ; Heunen, Chris ; Ghahramani, Zoubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-10c07ef21700dafda9913061f7a16c8459b3bcbd7fd18198c423939cc0e630e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ścibior, Adam</creatorcontrib><creatorcontrib>Kammar, Ohad</creatorcontrib><creatorcontrib>Vákár, Matthijs</creatorcontrib><creatorcontrib>Staton, Sam</creatorcontrib><creatorcontrib>Yang, Hongseok</creatorcontrib><creatorcontrib>Cai, Yufei</creatorcontrib><creatorcontrib>Ostermann, Klaus</creatorcontrib><creatorcontrib>Moss, Sean K.</creatorcontrib><creatorcontrib>Heunen, Chris</creatorcontrib><creatorcontrib>Ghahramani, Zoubin</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of ACM on programming languages</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ścibior, Adam</au><au>Kammar, Ohad</au><au>Vákár, Matthijs</au><au>Staton, Sam</au><au>Yang, Hongseok</au><au>Cai, Yufei</au><au>Ostermann, Klaus</au><au>Moss, Sean K.</au><au>Heunen, Chris</au><au>Ghahramani, Zoubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denotational validation of higher-order Bayesian inference</atitle><jtitle>Proceedings of ACM on programming languages</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2</volume><issue>POPL</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>2475-1421</issn><eissn>2475-1421</eissn><abstract>We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical justification nor their implementation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as manipulating intermediate representations of probabilistic programs using higher-order functions and inductive types, and their denotational semantics. Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order functions presents a substantial technical difficulty: it is impossible to define a measurable space structure over the collection of measurable functions between arbitrary measurable spaces that is compatible with standard operations on those functions, such as function application. We overcome this difficulty using quasi-Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous distributions. We define a class of semantic structures for representing probabilistic programs, and semantic validity criteria for transformations of these representations in terms of distribution preservation. We develop a collection of building blocks for composing representations. We use these building blocks to validate common inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the semantic manipulation and its traditional measure theoretic origins, we use Kock's synthetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-Hastings-Green theorem.</abstract><doi>10.1145/3158148</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-1421
ispartof Proceedings of ACM on programming languages, 2018-01, Vol.2 (POPL), p.1-29
issn 2475-1421
2475-1421
language eng
recordid cdi_crossref_primary_10_1145_3158148
source ACM Digital Library Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Denotational validation of higher-order Bayesian inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denotational%20validation%20of%20higher-order%20Bayesian%20inference&rft.jtitle=Proceedings%20of%20ACM%20on%20programming%20languages&rft.au=%C5%9Acibior,%20Adam&rft.date=2018-01-01&rft.volume=2&rft.issue=POPL&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=2475-1421&rft.eissn=2475-1421&rft_id=info:doi/10.1145/3158148&rft_dat=%3Ccrossref%3E10_1145_3158148%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true