Analysis of a High-Performance TSP Solver on the GPU

Graphical Processing Units have been applied to solve NP-hard problems with no known polynomial time solutions. An example of such a problem is the Traveling Salesman Problem (TSP). The TSP is one of the most commonly studied combinatorial optimization problems and has multiple applications in the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ACM journal of experimental algorithmics 2018-11, Vol.23, p.1-22
Hauptverfasser: Robinson, Jeffrey A., Vrbsky, Susan V., Hong, Xiaoyan, Eddy, Brian P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 1
container_title The ACM journal of experimental algorithmics
container_volume 23
creator Robinson, Jeffrey A.
Vrbsky, Susan V.
Hong, Xiaoyan
Eddy, Brian P.
description Graphical Processing Units have been applied to solve NP-hard problems with no known polynomial time solutions. An example of such a problem is the Traveling Salesman Problem (TSP). The TSP is one of the most commonly studied combinatorial optimization problems and has multiple applications in the areas of engineering, transportation, and logistics. This article presents an improved algorithm for approximating the TSP on fully connected, symmetric graphs by utilizing the GPU. Our approach improves an existing 2-opt hill-climbing algorithm with random restarts by considering multiple updates to the current path found in parallel, and it allows k number of updates per iteration, called k-swap . With our k-swap modification, we show a speed-up over the existing algorithm of 4.5× to 22.9× on data sets ranging from 1,400 to 33,810 nodes, respectively.
doi_str_mv 10.1145/3154835
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3154835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3154835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-a9b67f7a428a4d883377b50e56f12736d6e09be3f2c4e0e0fe9f7d542be5a59f3</originalsourceid><addsrcrecordid>eNpNj01LAzEUAINYsNbiX8jNU_RlX772WIq2QsGFtuclu_tiV7YbSYrQfy9iDz3NnAaGsUcJz1Iq_YJSK4f6hk0lOCWM0er2yu_Yfc5fABIBccrUYvTDOfeZx8A9X_efB1FRCjEd_dgS320rvo3DDyUeR346EF9V-wc2CX7INL9wxvZvr7vlWmw-Vu_LxUa0UsFJ-LIxNlivCudV5xyitY0G0ibIwqLpDEHZEIaiVQQEgcpgO62KhrTXZcAZe_rvtinmnCjU36k_-nSuJdR_s_VlFn8BBI9EOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of a High-Performance TSP Solver on the GPU</title><source>ACM Digital Library Complete</source><creator>Robinson, Jeffrey A. ; Vrbsky, Susan V. ; Hong, Xiaoyan ; Eddy, Brian P.</creator><creatorcontrib>Robinson, Jeffrey A. ; Vrbsky, Susan V. ; Hong, Xiaoyan ; Eddy, Brian P.</creatorcontrib><description>Graphical Processing Units have been applied to solve NP-hard problems with no known polynomial time solutions. An example of such a problem is the Traveling Salesman Problem (TSP). The TSP is one of the most commonly studied combinatorial optimization problems and has multiple applications in the areas of engineering, transportation, and logistics. This article presents an improved algorithm for approximating the TSP on fully connected, symmetric graphs by utilizing the GPU. Our approach improves an existing 2-opt hill-climbing algorithm with random restarts by considering multiple updates to the current path found in parallel, and it allows k number of updates per iteration, called k-swap . With our k-swap modification, we show a speed-up over the existing algorithm of 4.5× to 22.9× on data sets ranging from 1,400 to 33,810 nodes, respectively.</description><identifier>ISSN: 1084-6654</identifier><identifier>EISSN: 1084-6654</identifier><identifier>DOI: 10.1145/3154835</identifier><language>eng</language><ispartof>The ACM journal of experimental algorithmics, 2018-11, Vol.23, p.1-22</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-a9b67f7a428a4d883377b50e56f12736d6e09be3f2c4e0e0fe9f7d542be5a59f3</citedby><cites>FETCH-LOGICAL-c140t-a9b67f7a428a4d883377b50e56f12736d6e09be3f2c4e0e0fe9f7d542be5a59f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Robinson, Jeffrey A.</creatorcontrib><creatorcontrib>Vrbsky, Susan V.</creatorcontrib><creatorcontrib>Hong, Xiaoyan</creatorcontrib><creatorcontrib>Eddy, Brian P.</creatorcontrib><title>Analysis of a High-Performance TSP Solver on the GPU</title><title>The ACM journal of experimental algorithmics</title><description>Graphical Processing Units have been applied to solve NP-hard problems with no known polynomial time solutions. An example of such a problem is the Traveling Salesman Problem (TSP). The TSP is one of the most commonly studied combinatorial optimization problems and has multiple applications in the areas of engineering, transportation, and logistics. This article presents an improved algorithm for approximating the TSP on fully connected, symmetric graphs by utilizing the GPU. Our approach improves an existing 2-opt hill-climbing algorithm with random restarts by considering multiple updates to the current path found in parallel, and it allows k number of updates per iteration, called k-swap . With our k-swap modification, we show a speed-up over the existing algorithm of 4.5× to 22.9× on data sets ranging from 1,400 to 33,810 nodes, respectively.</description><issn>1084-6654</issn><issn>1084-6654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNj01LAzEUAINYsNbiX8jNU_RlX772WIq2QsGFtuclu_tiV7YbSYrQfy9iDz3NnAaGsUcJz1Iq_YJSK4f6hk0lOCWM0er2yu_Yfc5fABIBccrUYvTDOfeZx8A9X_efB1FRCjEd_dgS320rvo3DDyUeR346EF9V-wc2CX7INL9wxvZvr7vlWmw-Vu_LxUa0UsFJ-LIxNlivCudV5xyitY0G0ibIwqLpDEHZEIaiVQQEgcpgO62KhrTXZcAZe_rvtinmnCjU36k_-nSuJdR_s_VlFn8BBI9EOA</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Robinson, Jeffrey A.</creator><creator>Vrbsky, Susan V.</creator><creator>Hong, Xiaoyan</creator><creator>Eddy, Brian P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181115</creationdate><title>Analysis of a High-Performance TSP Solver on the GPU</title><author>Robinson, Jeffrey A. ; Vrbsky, Susan V. ; Hong, Xiaoyan ; Eddy, Brian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-a9b67f7a428a4d883377b50e56f12736d6e09be3f2c4e0e0fe9f7d542be5a59f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Jeffrey A.</creatorcontrib><creatorcontrib>Vrbsky, Susan V.</creatorcontrib><creatorcontrib>Hong, Xiaoyan</creatorcontrib><creatorcontrib>Eddy, Brian P.</creatorcontrib><collection>CrossRef</collection><jtitle>The ACM journal of experimental algorithmics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Jeffrey A.</au><au>Vrbsky, Susan V.</au><au>Hong, Xiaoyan</au><au>Eddy, Brian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a High-Performance TSP Solver on the GPU</atitle><jtitle>The ACM journal of experimental algorithmics</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>23</volume><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>1084-6654</issn><eissn>1084-6654</eissn><abstract>Graphical Processing Units have been applied to solve NP-hard problems with no known polynomial time solutions. An example of such a problem is the Traveling Salesman Problem (TSP). The TSP is one of the most commonly studied combinatorial optimization problems and has multiple applications in the areas of engineering, transportation, and logistics. This article presents an improved algorithm for approximating the TSP on fully connected, symmetric graphs by utilizing the GPU. Our approach improves an existing 2-opt hill-climbing algorithm with random restarts by considering multiple updates to the current path found in parallel, and it allows k number of updates per iteration, called k-swap . With our k-swap modification, we show a speed-up over the existing algorithm of 4.5× to 22.9× on data sets ranging from 1,400 to 33,810 nodes, respectively.</abstract><doi>10.1145/3154835</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-6654
ispartof The ACM journal of experimental algorithmics, 2018-11, Vol.23, p.1-22
issn 1084-6654
1084-6654
language eng
recordid cdi_crossref_primary_10_1145_3154835
source ACM Digital Library Complete
title Analysis of a High-Performance TSP Solver on the GPU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20High-Performance%20TSP%20Solver%20on%20the%20GPU&rft.jtitle=The%20ACM%20journal%20of%20experimental%20algorithmics&rft.au=Robinson,%20Jeffrey%20A.&rft.date=2018-11-15&rft.volume=23&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=1084-6654&rft.eissn=1084-6654&rft_id=info:doi/10.1145/3154835&rft_dat=%3Ccrossref%3E10_1145_3154835%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true