Hieroglyph: Locally-Sufficient Graph Processing via Compute-Sync-Merge

Despite their widespread adoption, large-scale graph processing systems do not fully decouple computation and communication, often yielding suboptimal performance. Locally-sufficient computation-computation that relies only on the graph state local to a computing host-can mitigate the effects of thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ACM on measurement and analysis of computing systems 2017-06, Vol.1 (1), p.1-25
Hauptverfasser: Ju, Xiaoen, Jamjoom, Hani, Shin, Kang G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 1
container_title Proceedings of the ACM on measurement and analysis of computing systems
container_volume 1
creator Ju, Xiaoen
Jamjoom, Hani
Shin, Kang G.
description Despite their widespread adoption, large-scale graph processing systems do not fully decouple computation and communication, often yielding suboptimal performance. Locally-sufficient computation-computation that relies only on the graph state local to a computing host-can mitigate the effects of this coupling. In this paper, we present Compute-Sync-Merge (CSM), a new programming abstraction that achieves efficient locally-sufficient computation. CSM enforces local sufficiency at the programming abstraction level and enables the activation of vertex-centric computation on all vertex replicas, thus supporting vertex-cut partitioning. We demonstrate the simplicity of expressing several fundamental graph algorithms in CSM. Hieroglyph-our implementation of a graph processing system with CSM support-outperforms state of the art by up to 53x, with a median speedup of 3.5x and an average speedup of 6x across a wide range of datasets.
doi_str_mv 10.1145/3084446
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3084446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3084446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c117t-6625f98eea4449d16205d3ba2bdf3221937f9e9e6c11a5dd2a75e419faaaa1f83</originalsourceid><addsrcrecordid>eNpNjz0LwjAYhIMoWGvxZzhV8-arzSjFLyi46FzSJtFKpSVx6b-3YgdvuRuOOx6EVoA3AIxvKU4ZY2KCAsISEQNhcvqX5yjy_okxhpRjLmmAFqfauPbe9N1jiWZWNd5Eo4fodthfs1OcX47nbJfHFUDyjoUg3MrUGDU8SQ2CYK5pqUipLSUEJE2sNNKIoa641kQl3DCQVg0Cm9IQrX-7lWu9d8YWnatfyvUF4OJLUYwU9AMRnjbZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hieroglyph: Locally-Sufficient Graph Processing via Compute-Sync-Merge</title><source>ACM Digital Library Complete</source><creator>Ju, Xiaoen ; Jamjoom, Hani ; Shin, Kang G.</creator><creatorcontrib>Ju, Xiaoen ; Jamjoom, Hani ; Shin, Kang G.</creatorcontrib><description>Despite their widespread adoption, large-scale graph processing systems do not fully decouple computation and communication, often yielding suboptimal performance. Locally-sufficient computation-computation that relies only on the graph state local to a computing host-can mitigate the effects of this coupling. In this paper, we present Compute-Sync-Merge (CSM), a new programming abstraction that achieves efficient locally-sufficient computation. CSM enforces local sufficiency at the programming abstraction level and enables the activation of vertex-centric computation on all vertex replicas, thus supporting vertex-cut partitioning. We demonstrate the simplicity of expressing several fundamental graph algorithms in CSM. Hieroglyph-our implementation of a graph processing system with CSM support-outperforms state of the art by up to 53x, with a median speedup of 3.5x and an average speedup of 6x across a wide range of datasets.</description><identifier>ISSN: 2476-1249</identifier><identifier>EISSN: 2476-1249</identifier><identifier>DOI: 10.1145/3084446</identifier><language>eng</language><ispartof>Proceedings of the ACM on measurement and analysis of computing systems, 2017-06, Vol.1 (1), p.1-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c117t-6625f98eea4449d16205d3ba2bdf3221937f9e9e6c11a5dd2a75e419faaaa1f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ju, Xiaoen</creatorcontrib><creatorcontrib>Jamjoom, Hani</creatorcontrib><creatorcontrib>Shin, Kang G.</creatorcontrib><title>Hieroglyph: Locally-Sufficient Graph Processing via Compute-Sync-Merge</title><title>Proceedings of the ACM on measurement and analysis of computing systems</title><description>Despite their widespread adoption, large-scale graph processing systems do not fully decouple computation and communication, often yielding suboptimal performance. Locally-sufficient computation-computation that relies only on the graph state local to a computing host-can mitigate the effects of this coupling. In this paper, we present Compute-Sync-Merge (CSM), a new programming abstraction that achieves efficient locally-sufficient computation. CSM enforces local sufficiency at the programming abstraction level and enables the activation of vertex-centric computation on all vertex replicas, thus supporting vertex-cut partitioning. We demonstrate the simplicity of expressing several fundamental graph algorithms in CSM. Hieroglyph-our implementation of a graph processing system with CSM support-outperforms state of the art by up to 53x, with a median speedup of 3.5x and an average speedup of 6x across a wide range of datasets.</description><issn>2476-1249</issn><issn>2476-1249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNjz0LwjAYhIMoWGvxZzhV8-arzSjFLyi46FzSJtFKpSVx6b-3YgdvuRuOOx6EVoA3AIxvKU4ZY2KCAsISEQNhcvqX5yjy_okxhpRjLmmAFqfauPbe9N1jiWZWNd5Eo4fodthfs1OcX47nbJfHFUDyjoUg3MrUGDU8SQ2CYK5pqUipLSUEJE2sNNKIoa641kQl3DCQVg0Cm9IQrX-7lWu9d8YWnatfyvUF4OJLUYwU9AMRnjbZ</recordid><startdate>20170613</startdate><enddate>20170613</enddate><creator>Ju, Xiaoen</creator><creator>Jamjoom, Hani</creator><creator>Shin, Kang G.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170613</creationdate><title>Hieroglyph</title><author>Ju, Xiaoen ; Jamjoom, Hani ; Shin, Kang G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c117t-6625f98eea4449d16205d3ba2bdf3221937f9e9e6c11a5dd2a75e419faaaa1f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Xiaoen</creatorcontrib><creatorcontrib>Jamjoom, Hani</creatorcontrib><creatorcontrib>Shin, Kang G.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ACM on measurement and analysis of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Xiaoen</au><au>Jamjoom, Hani</au><au>Shin, Kang G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hieroglyph: Locally-Sufficient Graph Processing via Compute-Sync-Merge</atitle><jtitle>Proceedings of the ACM on measurement and analysis of computing systems</jtitle><date>2017-06-13</date><risdate>2017</risdate><volume>1</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>2476-1249</issn><eissn>2476-1249</eissn><abstract>Despite their widespread adoption, large-scale graph processing systems do not fully decouple computation and communication, often yielding suboptimal performance. Locally-sufficient computation-computation that relies only on the graph state local to a computing host-can mitigate the effects of this coupling. In this paper, we present Compute-Sync-Merge (CSM), a new programming abstraction that achieves efficient locally-sufficient computation. CSM enforces local sufficiency at the programming abstraction level and enables the activation of vertex-centric computation on all vertex replicas, thus supporting vertex-cut partitioning. We demonstrate the simplicity of expressing several fundamental graph algorithms in CSM. Hieroglyph-our implementation of a graph processing system with CSM support-outperforms state of the art by up to 53x, with a median speedup of 3.5x and an average speedup of 6x across a wide range of datasets.</abstract><doi>10.1145/3084446</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2476-1249
ispartof Proceedings of the ACM on measurement and analysis of computing systems, 2017-06, Vol.1 (1), p.1-25
issn 2476-1249
2476-1249
language eng
recordid cdi_crossref_primary_10_1145_3084446
source ACM Digital Library Complete
title Hieroglyph: Locally-Sufficient Graph Processing via Compute-Sync-Merge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hieroglyph:%20Locally-Sufficient%20Graph%20Processing%20via%20Compute-Sync-Merge&rft.jtitle=Proceedings%20of%20the%20ACM%20on%20measurement%20and%20analysis%20of%20computing%20systems&rft.au=Ju,%20Xiaoen&rft.date=2017-06-13&rft.volume=1&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=2476-1249&rft.eissn=2476-1249&rft_id=info:doi/10.1145/3084446&rft_dat=%3Ccrossref%3E10_1145_3084446%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true