Abstracts of recent doctoral dissertations in computer algebra

Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM communications in computer algebra 2016-04, Vol.50 (1), p.40-42
1. Verfasser: Meng, Lingchuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 40
container_title ACM communications in computer algebra
container_volume 50
creator Meng, Lingchuan
description Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed exactly without rounding error.
doi_str_mv 10.1145/2930964.2930970
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_2930964_2930970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2930964_2930970</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_2930964_29309703</originalsourceid><addsrcrecordid>eNqVzr0KwjAUQOEMCtaf2TUv0DZJozaLIKL4AO4hTROJtE25Nw6-vSh9AaczHfgI2XJWcC53pVAVU3tZ_HpgM5JxVYlcCMkWZIn4ZEzWXNUZOZ4aTGBsQho9BWfdkGgbbYpgOtoGRAfJpBAHpGGgNvbjKzmgpnu4BsyazL3p0G2mrkh5vdzPt9xCRATn9QihN_DWnOkvTU80PdGq_48P9gVCTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abstracts of recent doctoral dissertations in computer algebra</title><source>ACM Digital Library Complete</source><creator>Meng, Lingchuan</creator><creatorcontrib>Meng, Lingchuan</creatorcontrib><description>Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed exactly without rounding error.</description><identifier>ISSN: 1932-2240</identifier><identifier>DOI: 10.1145/2930964.2930970</identifier><language>eng</language><ispartof>ACM communications in computer algebra, 2016-04, Vol.50 (1), p.40-42</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Meng, Lingchuan</creatorcontrib><title>Abstracts of recent doctoral dissertations in computer algebra</title><title>ACM communications in computer algebra</title><description>Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed exactly without rounding error.</description><issn>1932-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVzr0KwjAUQOEMCtaf2TUv0DZJozaLIKL4AO4hTROJtE25Nw6-vSh9AaczHfgI2XJWcC53pVAVU3tZ_HpgM5JxVYlcCMkWZIn4ZEzWXNUZOZ4aTGBsQho9BWfdkGgbbYpgOtoGRAfJpBAHpGGgNvbjKzmgpnu4BsyazL3p0G2mrkh5vdzPt9xCRATn9QihN_DWnOkvTU80PdGq_48P9gVCTg</recordid><startdate>20160427</startdate><enddate>20160427</enddate><creator>Meng, Lingchuan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160427</creationdate><title>Abstracts of recent doctoral dissertations in computer algebra</title><author>Meng, Lingchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_2930964_29309703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Meng, Lingchuan</creatorcontrib><collection>CrossRef</collection><jtitle>ACM communications in computer algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Lingchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abstracts of recent doctoral dissertations in computer algebra</atitle><jtitle>ACM communications in computer algebra</jtitle><date>2016-04-27</date><risdate>2016</risdate><volume>50</volume><issue>1</issue><spage>40</spage><epage>42</epage><pages>40-42</pages><issn>1932-2240</issn><abstract>Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed exactly without rounding error.</abstract><doi>10.1145/2930964.2930970</doi></addata></record>
fulltext fulltext
identifier ISSN: 1932-2240
ispartof ACM communications in computer algebra, 2016-04, Vol.50 (1), p.40-42
issn 1932-2240
language eng
recordid cdi_crossref_primary_10_1145_2930964_2930970
source ACM Digital Library Complete
title Abstracts of recent doctoral dissertations in computer algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abstracts%20of%20recent%20doctoral%20dissertations%20in%20computer%20algebra&rft.jtitle=ACM%20communications%20in%20computer%20algebra&rft.au=Meng,%20Lingchuan&rft.date=2016-04-27&rft.volume=50&rft.issue=1&rft.spage=40&rft.epage=42&rft.pages=40-42&rft.issn=1932-2240&rft_id=info:doi/10.1145/2930964.2930970&rft_dat=%3Ccrossref%3E10_1145_2930964_2930970%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true