Abstracts of recent doctoral dissertations in computer algebra
Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed...
Gespeichert in:
Veröffentlicht in: | ACM communications in computer algebra 2016-04, Vol.50 (1), p.40-42 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 40 |
container_title | ACM communications in computer algebra |
container_volume | 50 |
creator | Meng, Lingchuan |
description | Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed exactly without rounding error. |
doi_str_mv | 10.1145/2930964.2930970 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_2930964_2930970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2930964_2930970</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_2930964_29309703</originalsourceid><addsrcrecordid>eNqVzr0KwjAUQOEMCtaf2TUv0DZJozaLIKL4AO4hTROJtE25Nw6-vSh9AaczHfgI2XJWcC53pVAVU3tZ_HpgM5JxVYlcCMkWZIn4ZEzWXNUZOZ4aTGBsQho9BWfdkGgbbYpgOtoGRAfJpBAHpGGgNvbjKzmgpnu4BsyazL3p0G2mrkh5vdzPt9xCRATn9QihN_DWnOkvTU80PdGq_48P9gVCTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abstracts of recent doctoral dissertations in computer algebra</title><source>ACM Digital Library Complete</source><creator>Meng, Lingchuan</creator><creatorcontrib>Meng, Lingchuan</creatorcontrib><description>Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed exactly without rounding error.</description><identifier>ISSN: 1932-2240</identifier><identifier>DOI: 10.1145/2930964.2930970</identifier><language>eng</language><ispartof>ACM communications in computer algebra, 2016-04, Vol.50 (1), p.40-42</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Meng, Lingchuan</creatorcontrib><title>Abstracts of recent doctoral dissertations in computer algebra</title><title>ACM communications in computer algebra</title><description>Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed exactly without rounding error.</description><issn>1932-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVzr0KwjAUQOEMCtaf2TUv0DZJozaLIKL4AO4hTROJtE25Nw6-vSh9AaczHfgI2XJWcC53pVAVU3tZ_HpgM5JxVYlcCMkWZIn4ZEzWXNUZOZ4aTGBsQho9BWfdkGgbbYpgOtoGRAfJpBAHpGGgNvbjKzmgpnu4BsyazL3p0G2mrkh5vdzPt9xCRATn9QihN_DWnOkvTU80PdGq_48P9gVCTg</recordid><startdate>20160427</startdate><enddate>20160427</enddate><creator>Meng, Lingchuan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160427</creationdate><title>Abstracts of recent doctoral dissertations in computer algebra</title><author>Meng, Lingchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_2930964_29309703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Meng, Lingchuan</creatorcontrib><collection>CrossRef</collection><jtitle>ACM communications in computer algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Lingchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abstracts of recent doctoral dissertations in computer algebra</atitle><jtitle>ACM communications in computer algebra</jtitle><date>2016-04-27</date><risdate>2016</risdate><volume>50</volume><issue>1</issue><spage>40</spage><epage>42</epage><pages>40-42</pages><issn>1932-2240</issn><abstract>Polynomial multiplication is a key algorithm underlying computer algebra systems (CAS) and its efficient implementation is crucial for the performance of CAS. In this context coefficients of polynomials come from domains such as the integers, rationals and finite fields where arithmetic is performed exactly without rounding error.</abstract><doi>10.1145/2930964.2930970</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-2240 |
ispartof | ACM communications in computer algebra, 2016-04, Vol.50 (1), p.40-42 |
issn | 1932-2240 |
language | eng |
recordid | cdi_crossref_primary_10_1145_2930964_2930970 |
source | ACM Digital Library Complete |
title | Abstracts of recent doctoral dissertations in computer algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A10%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abstracts%20of%20recent%20doctoral%20dissertations%20in%20computer%20algebra&rft.jtitle=ACM%20communications%20in%20computer%20algebra&rft.au=Meng,%20Lingchuan&rft.date=2016-04-27&rft.volume=50&rft.issue=1&rft.spage=40&rft.epage=42&rft.pages=40-42&rft.issn=1932-2240&rft_id=info:doi/10.1145/2930964.2930970&rft_dat=%3Ccrossref%3E10_1145_2930964_2930970%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |