Workload-Driven Antijoin Cardinality Estimation

Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on database systems 2015-10, Vol.40 (3), p.1-41
Hauptverfasser: Rusu, Florin, Zhuang, Zixuan, Wu, Mingxi, Jermaine, Chris
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 3
container_start_page 1
container_title ACM transactions on database systems
container_volume 40
creator Rusu, Florin
Zhuang, Zixuan
Wu, Mingxi
Jermaine, Chris
description Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join cardinality estimation—a seemingly related problem—the lack of adequate solutions for antijoin cardinality estimation is intriguing. In this article, we introduce a novel sampling-based estimator for antijoin cardinality that (unlike existent estimators) provides sufficient accuracy and efficiency to be implemented in a query optimizer. The proposed estimator incorporates three novel ideas. First, we use prior workload information when learning a mixture superpopulation model of the data offline. Second, we design a Bayesian statistics framework that updates the superpopulation model according to the live queries, thus allowing the estimator to adapt dynamically to the online workload. Third, we develop an efficient algorithm for sampling from a hypergeometric distribution in order to generate Monte Carlo trials , without explicitly instantiating either the population or the sample. When put together, these ideas form the basis of an efficient antijoin cardinality estimator satisfying the strict requirements of a query optimizer, as shown by the extensive experimental results over synthetically-generated as well as massive TPC-H data.
doi_str_mv 10.1145/2818178
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_2818178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2818178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-127204f31811277c3747e4e7ca529b1634e0d722b6c0a1fa704be124bb68dfcc3</originalsourceid><addsrcrecordid>eNotj81KxDAURoMoWEfxFbpzFSc3uWna5VDHHxhwM4PLkqQpZKyJJEGYt7firL6z-jiHkHtgjwAo17yFFlR7QSqQUlFsEC9JxUTDqexAXpObnI-MMWw7VZH1R0yfc9QjfUr-x4V6E4o_Rh_qXqfRBz37cqq3ufgvXXwMt-Rq0nN2d-ddkcPzdt-_0t37y1u_2VHLuSwUuOIMJ7GoLKisUKgcOmW15J2BRqBjo-LcNJZpmLRiaBxwNKZpx8lasSIP_782xZyTm4bvtCik0wBs-Osczp3iF0uRQ34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Workload-Driven Antijoin Cardinality Estimation</title><source>ACM Digital Library</source><creator>Rusu, Florin ; Zhuang, Zixuan ; Wu, Mingxi ; Jermaine, Chris</creator><creatorcontrib>Rusu, Florin ; Zhuang, Zixuan ; Wu, Mingxi ; Jermaine, Chris</creatorcontrib><description>Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join cardinality estimation—a seemingly related problem—the lack of adequate solutions for antijoin cardinality estimation is intriguing. In this article, we introduce a novel sampling-based estimator for antijoin cardinality that (unlike existent estimators) provides sufficient accuracy and efficiency to be implemented in a query optimizer. The proposed estimator incorporates three novel ideas. First, we use prior workload information when learning a mixture superpopulation model of the data offline. Second, we design a Bayesian statistics framework that updates the superpopulation model according to the live queries, thus allowing the estimator to adapt dynamically to the online workload. Third, we develop an efficient algorithm for sampling from a hypergeometric distribution in order to generate Monte Carlo trials , without explicitly instantiating either the population or the sample. When put together, these ideas form the basis of an efficient antijoin cardinality estimator satisfying the strict requirements of a query optimizer, as shown by the extensive experimental results over synthetically-generated as well as massive TPC-H data.</description><identifier>ISSN: 0362-5915</identifier><identifier>EISSN: 1557-4644</identifier><identifier>DOI: 10.1145/2818178</identifier><language>eng</language><ispartof>ACM transactions on database systems, 2015-10, Vol.40 (3), p.1-41</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-127204f31811277c3747e4e7ca529b1634e0d722b6c0a1fa704be124bb68dfcc3</citedby><cites>FETCH-LOGICAL-c225t-127204f31811277c3747e4e7ca529b1634e0d722b6c0a1fa704be124bb68dfcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rusu, Florin</creatorcontrib><creatorcontrib>Zhuang, Zixuan</creatorcontrib><creatorcontrib>Wu, Mingxi</creatorcontrib><creatorcontrib>Jermaine, Chris</creatorcontrib><title>Workload-Driven Antijoin Cardinality Estimation</title><title>ACM transactions on database systems</title><description>Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join cardinality estimation—a seemingly related problem—the lack of adequate solutions for antijoin cardinality estimation is intriguing. In this article, we introduce a novel sampling-based estimator for antijoin cardinality that (unlike existent estimators) provides sufficient accuracy and efficiency to be implemented in a query optimizer. The proposed estimator incorporates three novel ideas. First, we use prior workload information when learning a mixture superpopulation model of the data offline. Second, we design a Bayesian statistics framework that updates the superpopulation model according to the live queries, thus allowing the estimator to adapt dynamically to the online workload. Third, we develop an efficient algorithm for sampling from a hypergeometric distribution in order to generate Monte Carlo trials , without explicitly instantiating either the population or the sample. When put together, these ideas form the basis of an efficient antijoin cardinality estimator satisfying the strict requirements of a query optimizer, as shown by the extensive experimental results over synthetically-generated as well as massive TPC-H data.</description><issn>0362-5915</issn><issn>1557-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotj81KxDAURoMoWEfxFbpzFSc3uWna5VDHHxhwM4PLkqQpZKyJJEGYt7firL6z-jiHkHtgjwAo17yFFlR7QSqQUlFsEC9JxUTDqexAXpObnI-MMWw7VZH1R0yfc9QjfUr-x4V6E4o_Rh_qXqfRBz37cqq3ufgvXXwMt-Rq0nN2d-ddkcPzdt-_0t37y1u_2VHLuSwUuOIMJ7GoLKisUKgcOmW15J2BRqBjo-LcNJZpmLRiaBxwNKZpx8lasSIP_782xZyTm4bvtCik0wBs-Osczp3iF0uRQ34</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Rusu, Florin</creator><creator>Zhuang, Zixuan</creator><creator>Wu, Mingxi</creator><creator>Jermaine, Chris</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Workload-Driven Antijoin Cardinality Estimation</title><author>Rusu, Florin ; Zhuang, Zixuan ; Wu, Mingxi ; Jermaine, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-127204f31811277c3747e4e7ca529b1634e0d722b6c0a1fa704be124bb68dfcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusu, Florin</creatorcontrib><creatorcontrib>Zhuang, Zixuan</creatorcontrib><creatorcontrib>Wu, Mingxi</creatorcontrib><creatorcontrib>Jermaine, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on database systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusu, Florin</au><au>Zhuang, Zixuan</au><au>Wu, Mingxi</au><au>Jermaine, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Workload-Driven Antijoin Cardinality Estimation</atitle><jtitle>ACM transactions on database systems</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>40</volume><issue>3</issue><spage>1</spage><epage>41</epage><pages>1-41</pages><issn>0362-5915</issn><eissn>1557-4644</eissn><abstract>Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join cardinality estimation—a seemingly related problem—the lack of adequate solutions for antijoin cardinality estimation is intriguing. In this article, we introduce a novel sampling-based estimator for antijoin cardinality that (unlike existent estimators) provides sufficient accuracy and efficiency to be implemented in a query optimizer. The proposed estimator incorporates three novel ideas. First, we use prior workload information when learning a mixture superpopulation model of the data offline. Second, we design a Bayesian statistics framework that updates the superpopulation model according to the live queries, thus allowing the estimator to adapt dynamically to the online workload. Third, we develop an efficient algorithm for sampling from a hypergeometric distribution in order to generate Monte Carlo trials , without explicitly instantiating either the population or the sample. When put together, these ideas form the basis of an efficient antijoin cardinality estimator satisfying the strict requirements of a query optimizer, as shown by the extensive experimental results over synthetically-generated as well as massive TPC-H data.</abstract><doi>10.1145/2818178</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-5915
ispartof ACM transactions on database systems, 2015-10, Vol.40 (3), p.1-41
issn 0362-5915
1557-4644
language eng
recordid cdi_crossref_primary_10_1145_2818178
source ACM Digital Library
title Workload-Driven Antijoin Cardinality Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Workload-Driven%20Antijoin%20Cardinality%20Estimation&rft.jtitle=ACM%20transactions%20on%20database%20systems&rft.au=Rusu,%20Florin&rft.date=2015-10-01&rft.volume=40&rft.issue=3&rft.spage=1&rft.epage=41&rft.pages=1-41&rft.issn=0362-5915&rft.eissn=1557-4644&rft_id=info:doi/10.1145/2818178&rft_dat=%3Ccrossref%3E10_1145_2818178%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true