Workload-Driven Antijoin Cardinality Estimation
Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join car...
Gespeichert in:
Veröffentlicht in: | ACM transactions on database systems 2015-10, Vol.40 (3), p.1-41 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | ACM transactions on database systems |
container_volume | 40 |
creator | Rusu, Florin Zhuang, Zixuan Wu, Mingxi Jermaine, Chris |
description | Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join cardinality estimation—a seemingly related problem—the lack of adequate solutions for antijoin cardinality estimation is intriguing. In this article, we introduce a novel
sampling-based estimator
for antijoin cardinality that (unlike existent estimators) provides sufficient accuracy and efficiency to be implemented in a query optimizer. The proposed estimator incorporates three novel ideas. First, we use prior workload information when learning a
mixture superpopulation model
of the data offline. Second, we design a
Bayesian statistics framework
that updates the superpopulation model according to the live queries, thus allowing the estimator to adapt dynamically to the online workload. Third, we develop an efficient algorithm for sampling from a hypergeometric distribution in order to generate
Monte Carlo trials
, without explicitly instantiating either the population or the sample. When put together, these ideas form the basis of an efficient antijoin cardinality estimator satisfying the strict requirements of a query optimizer, as shown by the extensive experimental results over synthetically-generated as well as massive TPC-H data. |
doi_str_mv | 10.1145/2818178 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_2818178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2818178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-127204f31811277c3747e4e7ca529b1634e0d722b6c0a1fa704be124bb68dfcc3</originalsourceid><addsrcrecordid>eNotj81KxDAURoMoWEfxFbpzFSc3uWna5VDHHxhwM4PLkqQpZKyJJEGYt7firL6z-jiHkHtgjwAo17yFFlR7QSqQUlFsEC9JxUTDqexAXpObnI-MMWw7VZH1R0yfc9QjfUr-x4V6E4o_Rh_qXqfRBz37cqq3ufgvXXwMt-Rq0nN2d-ddkcPzdt-_0t37y1u_2VHLuSwUuOIMJ7GoLKisUKgcOmW15J2BRqBjo-LcNJZpmLRiaBxwNKZpx8lasSIP_782xZyTm4bvtCik0wBs-Osczp3iF0uRQ34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Workload-Driven Antijoin Cardinality Estimation</title><source>ACM Digital Library</source><creator>Rusu, Florin ; Zhuang, Zixuan ; Wu, Mingxi ; Jermaine, Chris</creator><creatorcontrib>Rusu, Florin ; Zhuang, Zixuan ; Wu, Mingxi ; Jermaine, Chris</creatorcontrib><description>Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join cardinality estimation—a seemingly related problem—the lack of adequate solutions for antijoin cardinality estimation is intriguing. In this article, we introduce a novel
sampling-based estimator
for antijoin cardinality that (unlike existent estimators) provides sufficient accuracy and efficiency to be implemented in a query optimizer. The proposed estimator incorporates three novel ideas. First, we use prior workload information when learning a
mixture superpopulation model
of the data offline. Second, we design a
Bayesian statistics framework
that updates the superpopulation model according to the live queries, thus allowing the estimator to adapt dynamically to the online workload. Third, we develop an efficient algorithm for sampling from a hypergeometric distribution in order to generate
Monte Carlo trials
, without explicitly instantiating either the population or the sample. When put together, these ideas form the basis of an efficient antijoin cardinality estimator satisfying the strict requirements of a query optimizer, as shown by the extensive experimental results over synthetically-generated as well as massive TPC-H data.</description><identifier>ISSN: 0362-5915</identifier><identifier>EISSN: 1557-4644</identifier><identifier>DOI: 10.1145/2818178</identifier><language>eng</language><ispartof>ACM transactions on database systems, 2015-10, Vol.40 (3), p.1-41</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-127204f31811277c3747e4e7ca529b1634e0d722b6c0a1fa704be124bb68dfcc3</citedby><cites>FETCH-LOGICAL-c225t-127204f31811277c3747e4e7ca529b1634e0d722b6c0a1fa704be124bb68dfcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rusu, Florin</creatorcontrib><creatorcontrib>Zhuang, Zixuan</creatorcontrib><creatorcontrib>Wu, Mingxi</creatorcontrib><creatorcontrib>Jermaine, Chris</creatorcontrib><title>Workload-Driven Antijoin Cardinality Estimation</title><title>ACM transactions on database systems</title><description>Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join cardinality estimation—a seemingly related problem—the lack of adequate solutions for antijoin cardinality estimation is intriguing. In this article, we introduce a novel
sampling-based estimator
for antijoin cardinality that (unlike existent estimators) provides sufficient accuracy and efficiency to be implemented in a query optimizer. The proposed estimator incorporates three novel ideas. First, we use prior workload information when learning a
mixture superpopulation model
of the data offline. Second, we design a
Bayesian statistics framework
that updates the superpopulation model according to the live queries, thus allowing the estimator to adapt dynamically to the online workload. Third, we develop an efficient algorithm for sampling from a hypergeometric distribution in order to generate
Monte Carlo trials
, without explicitly instantiating either the population or the sample. When put together, these ideas form the basis of an efficient antijoin cardinality estimator satisfying the strict requirements of a query optimizer, as shown by the extensive experimental results over synthetically-generated as well as massive TPC-H data.</description><issn>0362-5915</issn><issn>1557-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotj81KxDAURoMoWEfxFbpzFSc3uWna5VDHHxhwM4PLkqQpZKyJJEGYt7firL6z-jiHkHtgjwAo17yFFlR7QSqQUlFsEC9JxUTDqexAXpObnI-MMWw7VZH1R0yfc9QjfUr-x4V6E4o_Rh_qXqfRBz37cqq3ufgvXXwMt-Rq0nN2d-ddkcPzdt-_0t37y1u_2VHLuSwUuOIMJ7GoLKisUKgcOmW15J2BRqBjo-LcNJZpmLRiaBxwNKZpx8lasSIP_782xZyTm4bvtCik0wBs-Osczp3iF0uRQ34</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Rusu, Florin</creator><creator>Zhuang, Zixuan</creator><creator>Wu, Mingxi</creator><creator>Jermaine, Chris</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Workload-Driven Antijoin Cardinality Estimation</title><author>Rusu, Florin ; Zhuang, Zixuan ; Wu, Mingxi ; Jermaine, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-127204f31811277c3747e4e7ca529b1634e0d722b6c0a1fa704be124bb68dfcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusu, Florin</creatorcontrib><creatorcontrib>Zhuang, Zixuan</creatorcontrib><creatorcontrib>Wu, Mingxi</creatorcontrib><creatorcontrib>Jermaine, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on database systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusu, Florin</au><au>Zhuang, Zixuan</au><au>Wu, Mingxi</au><au>Jermaine, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Workload-Driven Antijoin Cardinality Estimation</atitle><jtitle>ACM transactions on database systems</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>40</volume><issue>3</issue><spage>1</spage><epage>41</epage><pages>1-41</pages><issn>0362-5915</issn><eissn>1557-4644</eissn><abstract>Antijoin cardinality estimation is among a handful of problems that has eluded accurate efficient solutions amenable to implementation in relational query optimizers. Given the widespread use of antijoin and subset-based queries in analytical workloads and the extensive research targeted at join cardinality estimation—a seemingly related problem—the lack of adequate solutions for antijoin cardinality estimation is intriguing. In this article, we introduce a novel
sampling-based estimator
for antijoin cardinality that (unlike existent estimators) provides sufficient accuracy and efficiency to be implemented in a query optimizer. The proposed estimator incorporates three novel ideas. First, we use prior workload information when learning a
mixture superpopulation model
of the data offline. Second, we design a
Bayesian statistics framework
that updates the superpopulation model according to the live queries, thus allowing the estimator to adapt dynamically to the online workload. Third, we develop an efficient algorithm for sampling from a hypergeometric distribution in order to generate
Monte Carlo trials
, without explicitly instantiating either the population or the sample. When put together, these ideas form the basis of an efficient antijoin cardinality estimator satisfying the strict requirements of a query optimizer, as shown by the extensive experimental results over synthetically-generated as well as massive TPC-H data.</abstract><doi>10.1145/2818178</doi><tpages>41</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-5915 |
ispartof | ACM transactions on database systems, 2015-10, Vol.40 (3), p.1-41 |
issn | 0362-5915 1557-4644 |
language | eng |
recordid | cdi_crossref_primary_10_1145_2818178 |
source | ACM Digital Library |
title | Workload-Driven Antijoin Cardinality Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Workload-Driven%20Antijoin%20Cardinality%20Estimation&rft.jtitle=ACM%20transactions%20on%20database%20systems&rft.au=Rusu,%20Florin&rft.date=2015-10-01&rft.volume=40&rft.issue=3&rft.spage=1&rft.epage=41&rft.pages=1-41&rft.issn=0362-5915&rft.eissn=1557-4644&rft_id=info:doi/10.1145/2818178&rft_dat=%3Ccrossref%3E10_1145_2818178%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |