Mining Mobile User Preferences for Personalized Context-Aware Recommendation

Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on intelligent systems and technology 2014-12, Vol.5 (4), p.1-27
Hauptverfasser: Zhu, Hengshu, Chen, Enhong, Xiong, Hui, Yu, Kuifei, Cao, Huanhuan, Tian, Jilei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 4
container_start_page 1
container_title ACM transactions on intelligent systems and technology
container_volume 5
creator Zhu, Hengshu
Chen, Enhong
Xiong, Hui
Yu, Kuifei
Cao, Huanhuan
Tian, Jilei
description Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or context logs for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.
doi_str_mv 10.1145/2532515
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_2532515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2532515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a23a8983bf58d70d640419c7a278017736a0703a974d209c5129529bc07182e03</originalsourceid><addsrcrecordid>eNo9UEtLxDAYDKLgsi7-hdw8Vb-8mua4FB8LXRRxzyVNv0qkTSQp-Pj1Vlycy8xcZoYh5JLBNWNS3XAluGLqhKw4U7ooDeOn_xrkOdnk_AYLpOGGVSvS7H3w4ZXuY-dHpIeMiT4lHDBhcJjpEBePKcdgR_-NPa1jmPFzLrYfNiF9RhenCUNvZx_DBTkb7Jhxc-Q1OdzdvtQPRfN4v6u3TeGW0rmwXNjKVKIbVNVr6EsJkhmnLdcVMK1FaUGDsEbLnoNxinGjuOkcaFZxBLEmV3-5LsWcl7Xte_KTTV8tg_b3h_b4g_gBg2dNfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mining Mobile User Preferences for Personalized Context-Aware Recommendation</title><source>ACM Digital Library Complete</source><creator>Zhu, Hengshu ; Chen, Enhong ; Xiong, Hui ; Yu, Kuifei ; Cao, Huanhuan ; Tian, Jilei</creator><creatorcontrib>Zhu, Hengshu ; Chen, Enhong ; Xiong, Hui ; Yu, Kuifei ; Cao, Huanhuan ; Tian, Jilei</creatorcontrib><description>Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or context logs for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.</description><identifier>ISSN: 2157-6904</identifier><identifier>EISSN: 2157-6912</identifier><identifier>DOI: 10.1145/2532515</identifier><language>eng</language><ispartof>ACM transactions on intelligent systems and technology, 2014-12, Vol.5 (4), p.1-27</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a23a8983bf58d70d640419c7a278017736a0703a974d209c5129529bc07182e03</citedby><cites>FETCH-LOGICAL-c291t-a23a8983bf58d70d640419c7a278017736a0703a974d209c5129529bc07182e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Hengshu</creatorcontrib><creatorcontrib>Chen, Enhong</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Yu, Kuifei</creatorcontrib><creatorcontrib>Cao, Huanhuan</creatorcontrib><creatorcontrib>Tian, Jilei</creatorcontrib><title>Mining Mobile User Preferences for Personalized Context-Aware Recommendation</title><title>ACM transactions on intelligent systems and technology</title><description>Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or context logs for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.</description><issn>2157-6904</issn><issn>2157-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9UEtLxDAYDKLgsi7-hdw8Vb-8mua4FB8LXRRxzyVNv0qkTSQp-Pj1Vlycy8xcZoYh5JLBNWNS3XAluGLqhKw4U7ooDeOn_xrkOdnk_AYLpOGGVSvS7H3w4ZXuY-dHpIeMiT4lHDBhcJjpEBePKcdgR_-NPa1jmPFzLrYfNiF9RhenCUNvZx_DBTkb7Jhxc-Q1OdzdvtQPRfN4v6u3TeGW0rmwXNjKVKIbVNVr6EsJkhmnLdcVMK1FaUGDsEbLnoNxinGjuOkcaFZxBLEmV3-5LsWcl7Xte_KTTV8tg_b3h_b4g_gBg2dNfA</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Zhu, Hengshu</creator><creator>Chen, Enhong</creator><creator>Xiong, Hui</creator><creator>Yu, Kuifei</creator><creator>Cao, Huanhuan</creator><creator>Tian, Jilei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141215</creationdate><title>Mining Mobile User Preferences for Personalized Context-Aware Recommendation</title><author>Zhu, Hengshu ; Chen, Enhong ; Xiong, Hui ; Yu, Kuifei ; Cao, Huanhuan ; Tian, Jilei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a23a8983bf58d70d640419c7a278017736a0703a974d209c5129529bc07182e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hengshu</creatorcontrib><creatorcontrib>Chen, Enhong</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Yu, Kuifei</creatorcontrib><creatorcontrib>Cao, Huanhuan</creatorcontrib><creatorcontrib>Tian, Jilei</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on intelligent systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Hengshu</au><au>Chen, Enhong</au><au>Xiong, Hui</au><au>Yu, Kuifei</au><au>Cao, Huanhuan</au><au>Tian, Jilei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining Mobile User Preferences for Personalized Context-Aware Recommendation</atitle><jtitle>ACM transactions on intelligent systems and technology</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>2157-6904</issn><eissn>2157-6912</eissn><abstract>Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or context logs for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.</abstract><doi>10.1145/2532515</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2157-6904
ispartof ACM transactions on intelligent systems and technology, 2014-12, Vol.5 (4), p.1-27
issn 2157-6904
2157-6912
language eng
recordid cdi_crossref_primary_10_1145_2532515
source ACM Digital Library Complete
title Mining Mobile User Preferences for Personalized Context-Aware Recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20Mobile%20User%20Preferences%20for%20Personalized%20Context-Aware%20Recommendation&rft.jtitle=ACM%20transactions%20on%20intelligent%20systems%20and%20technology&rft.au=Zhu,%20Hengshu&rft.date=2014-12-15&rft.volume=5&rft.issue=4&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=2157-6904&rft.eissn=2157-6912&rft_id=info:doi/10.1145/2532515&rft_dat=%3Ccrossref%3E10_1145_2532515%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true