Mining Mobile User Preferences for Personalized Context-Aware Recommendation
Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thu...
Gespeichert in:
Veröffentlicht in: | ACM transactions on intelligent systems and technology 2014-12, Vol.5 (4), p.1-27 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | ACM transactions on intelligent systems and technology |
container_volume | 5 |
creator | Zhu, Hengshu Chen, Enhong Xiong, Hui Yu, Kuifei Cao, Huanhuan Tian, Jilei |
description | Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or
context logs
for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users. |
doi_str_mv | 10.1145/2532515 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_2532515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2532515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a23a8983bf58d70d640419c7a278017736a0703a974d209c5129529bc07182e03</originalsourceid><addsrcrecordid>eNo9UEtLxDAYDKLgsi7-hdw8Vb-8mua4FB8LXRRxzyVNv0qkTSQp-Pj1Vlycy8xcZoYh5JLBNWNS3XAluGLqhKw4U7ooDeOn_xrkOdnk_AYLpOGGVSvS7H3w4ZXuY-dHpIeMiT4lHDBhcJjpEBePKcdgR_-NPa1jmPFzLrYfNiF9RhenCUNvZx_DBTkb7Jhxc-Q1OdzdvtQPRfN4v6u3TeGW0rmwXNjKVKIbVNVr6EsJkhmnLdcVMK1FaUGDsEbLnoNxinGjuOkcaFZxBLEmV3-5LsWcl7Xte_KTTV8tg_b3h_b4g_gBg2dNfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mining Mobile User Preferences for Personalized Context-Aware Recommendation</title><source>ACM Digital Library Complete</source><creator>Zhu, Hengshu ; Chen, Enhong ; Xiong, Hui ; Yu, Kuifei ; Cao, Huanhuan ; Tian, Jilei</creator><creatorcontrib>Zhu, Hengshu ; Chen, Enhong ; Xiong, Hui ; Yu, Kuifei ; Cao, Huanhuan ; Tian, Jilei</creatorcontrib><description>Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or
context logs
for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.</description><identifier>ISSN: 2157-6904</identifier><identifier>EISSN: 2157-6912</identifier><identifier>DOI: 10.1145/2532515</identifier><language>eng</language><ispartof>ACM transactions on intelligent systems and technology, 2014-12, Vol.5 (4), p.1-27</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a23a8983bf58d70d640419c7a278017736a0703a974d209c5129529bc07182e03</citedby><cites>FETCH-LOGICAL-c291t-a23a8983bf58d70d640419c7a278017736a0703a974d209c5129529bc07182e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Hengshu</creatorcontrib><creatorcontrib>Chen, Enhong</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Yu, Kuifei</creatorcontrib><creatorcontrib>Cao, Huanhuan</creatorcontrib><creatorcontrib>Tian, Jilei</creatorcontrib><title>Mining Mobile User Preferences for Personalized Context-Aware Recommendation</title><title>ACM transactions on intelligent systems and technology</title><description>Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or
context logs
for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.</description><issn>2157-6904</issn><issn>2157-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9UEtLxDAYDKLgsi7-hdw8Vb-8mua4FB8LXRRxzyVNv0qkTSQp-Pj1Vlycy8xcZoYh5JLBNWNS3XAluGLqhKw4U7ooDeOn_xrkOdnk_AYLpOGGVSvS7H3w4ZXuY-dHpIeMiT4lHDBhcJjpEBePKcdgR_-NPa1jmPFzLrYfNiF9RhenCUNvZx_DBTkb7Jhxc-Q1OdzdvtQPRfN4v6u3TeGW0rmwXNjKVKIbVNVr6EsJkhmnLdcVMK1FaUGDsEbLnoNxinGjuOkcaFZxBLEmV3-5LsWcl7Xte_KTTV8tg_b3h_b4g_gBg2dNfA</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Zhu, Hengshu</creator><creator>Chen, Enhong</creator><creator>Xiong, Hui</creator><creator>Yu, Kuifei</creator><creator>Cao, Huanhuan</creator><creator>Tian, Jilei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141215</creationdate><title>Mining Mobile User Preferences for Personalized Context-Aware Recommendation</title><author>Zhu, Hengshu ; Chen, Enhong ; Xiong, Hui ; Yu, Kuifei ; Cao, Huanhuan ; Tian, Jilei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a23a8983bf58d70d640419c7a278017736a0703a974d209c5129529bc07182e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hengshu</creatorcontrib><creatorcontrib>Chen, Enhong</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Yu, Kuifei</creatorcontrib><creatorcontrib>Cao, Huanhuan</creatorcontrib><creatorcontrib>Tian, Jilei</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on intelligent systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Hengshu</au><au>Chen, Enhong</au><au>Xiong, Hui</au><au>Yu, Kuifei</au><au>Cao, Huanhuan</au><au>Tian, Jilei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining Mobile User Preferences for Personalized Context-Aware Recommendation</atitle><jtitle>ACM transactions on intelligent systems and technology</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>2157-6904</issn><eissn>2157-6912</eissn><abstract>Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or
context logs
for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.</abstract><doi>10.1145/2532515</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-6904 |
ispartof | ACM transactions on intelligent systems and technology, 2014-12, Vol.5 (4), p.1-27 |
issn | 2157-6904 2157-6912 |
language | eng |
recordid | cdi_crossref_primary_10_1145_2532515 |
source | ACM Digital Library Complete |
title | Mining Mobile User Preferences for Personalized Context-Aware Recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20Mobile%20User%20Preferences%20for%20Personalized%20Context-Aware%20Recommendation&rft.jtitle=ACM%20transactions%20on%20intelligent%20systems%20and%20technology&rft.au=Zhu,%20Hengshu&rft.date=2014-12-15&rft.volume=5&rft.issue=4&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=2157-6904&rft.eissn=2157-6912&rft_id=info:doi/10.1145/2532515&rft_dat=%3Ccrossref%3E10_1145_2532515%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |