On the complexity of computing the GCD of two polynomials via Hankel matrices

This paper is devoted to present a revised algorithm that permits to preserve the beautiful relation between the classical Euclidean algorithm and the block diagonalization of Hankel matrices for two noncoprime polynomials. Our algorithm for Greatest Common Divisor (GCD) computation which has a cost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM communications in computer algebra 2013-01, Vol.46 (3/4), p.74-75
Hauptverfasser: Belhaj, Skander, Kahla, Haïthem Ben
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 3/4
container_start_page 74
container_title ACM communications in computer algebra
container_volume 46
creator Belhaj, Skander
Kahla, Haïthem Ben
description This paper is devoted to present a revised algorithm that permits to preserve the beautiful relation between the classical Euclidean algorithm and the block diagonalization of Hankel matrices for two noncoprime polynomials. Our algorithm for Greatest Common Divisor (GCD) computation which has a cost of O ( n 2 ) arithmetic operations is tested for several sets of polynomials. A complexity comparison is given with respect to other existing methods based on structured matrix computations.
doi_str_mv 10.1145/2429135.2429140
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_2429135_2429140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2429135_2429140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-300f538c2090f6ef1a79adbae36e9eaf5e4b1e688d390bb40729e6ca5c3c69e03</originalsourceid><addsrcrecordid>eNotkMtOwzAURL0AiVJYs_UPpL1-Nl6iAC1SUTewjhz3Ggx5KTaP_D00ZDWaOdIsDiE3DFaMSbXmkhsm1GpKCWdkwYzgGecSLshljO8AMmcmX5CnQ0vTG1LXNX2NPyGNtPNT-0yhfZ3Ytrg7jem7o31Xj23XBFtH-hUs3dn2A2va2DQEh_GKnPs_hNdzLsnLw_1zscv2h-1jcbvPHFM6ZQLAK5E7Dga8Rs_sxthjZVFoNGi9Qlkx1Hl-FAaqSsKGG9TOKiecNghiSdb_v27oYhzQl_0QGjuMJYPyZKCcDZSzAfELoapQdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the complexity of computing the GCD of two polynomials via Hankel matrices</title><source>ACM Digital Library</source><creator>Belhaj, Skander ; Kahla, Haïthem Ben</creator><creatorcontrib>Belhaj, Skander ; Kahla, Haïthem Ben</creatorcontrib><description>This paper is devoted to present a revised algorithm that permits to preserve the beautiful relation between the classical Euclidean algorithm and the block diagonalization of Hankel matrices for two noncoprime polynomials. Our algorithm for Greatest Common Divisor (GCD) computation which has a cost of O ( n 2 ) arithmetic operations is tested for several sets of polynomials. A complexity comparison is given with respect to other existing methods based on structured matrix computations.</description><identifier>ISSN: 1932-2240</identifier><identifier>DOI: 10.1145/2429135.2429140</identifier><language>eng</language><ispartof>ACM communications in computer algebra, 2013-01, Vol.46 (3/4), p.74-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c156t-300f538c2090f6ef1a79adbae36e9eaf5e4b1e688d390bb40729e6ca5c3c69e03</citedby><cites>FETCH-LOGICAL-c156t-300f538c2090f6ef1a79adbae36e9eaf5e4b1e688d390bb40729e6ca5c3c69e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Belhaj, Skander</creatorcontrib><creatorcontrib>Kahla, Haïthem Ben</creatorcontrib><title>On the complexity of computing the GCD of two polynomials via Hankel matrices</title><title>ACM communications in computer algebra</title><description>This paper is devoted to present a revised algorithm that permits to preserve the beautiful relation between the classical Euclidean algorithm and the block diagonalization of Hankel matrices for two noncoprime polynomials. Our algorithm for Greatest Common Divisor (GCD) computation which has a cost of O ( n 2 ) arithmetic operations is tested for several sets of polynomials. A complexity comparison is given with respect to other existing methods based on structured matrix computations.</description><issn>1932-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAURL0AiVJYs_UPpL1-Nl6iAC1SUTewjhz3Ggx5KTaP_D00ZDWaOdIsDiE3DFaMSbXmkhsm1GpKCWdkwYzgGecSLshljO8AMmcmX5CnQ0vTG1LXNX2NPyGNtPNT-0yhfZ3Ytrg7jem7o31Xj23XBFtH-hUs3dn2A2va2DQEh_GKnPs_hNdzLsnLw_1zscv2h-1jcbvPHFM6ZQLAK5E7Dga8Rs_sxthjZVFoNGi9Qlkx1Hl-FAaqSsKGG9TOKiecNghiSdb_v27oYhzQl_0QGjuMJYPyZKCcDZSzAfELoapQdQ</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Belhaj, Skander</creator><creator>Kahla, Haïthem Ben</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130115</creationdate><title>On the complexity of computing the GCD of two polynomials via Hankel matrices</title><author>Belhaj, Skander ; Kahla, Haïthem Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-300f538c2090f6ef1a79adbae36e9eaf5e4b1e688d390bb40729e6ca5c3c69e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Belhaj, Skander</creatorcontrib><creatorcontrib>Kahla, Haïthem Ben</creatorcontrib><collection>CrossRef</collection><jtitle>ACM communications in computer algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belhaj, Skander</au><au>Kahla, Haïthem Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the complexity of computing the GCD of two polynomials via Hankel matrices</atitle><jtitle>ACM communications in computer algebra</jtitle><date>2013-01-15</date><risdate>2013</risdate><volume>46</volume><issue>3/4</issue><spage>74</spage><epage>75</epage><pages>74-75</pages><issn>1932-2240</issn><abstract>This paper is devoted to present a revised algorithm that permits to preserve the beautiful relation between the classical Euclidean algorithm and the block diagonalization of Hankel matrices for two noncoprime polynomials. Our algorithm for Greatest Common Divisor (GCD) computation which has a cost of O ( n 2 ) arithmetic operations is tested for several sets of polynomials. A complexity comparison is given with respect to other existing methods based on structured matrix computations.</abstract><doi>10.1145/2429135.2429140</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-2240
ispartof ACM communications in computer algebra, 2013-01, Vol.46 (3/4), p.74-75
issn 1932-2240
language eng
recordid cdi_crossref_primary_10_1145_2429135_2429140
source ACM Digital Library
title On the complexity of computing the GCD of two polynomials via Hankel matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20complexity%20of%20computing%20the%20GCD%20of%20two%20polynomials%20via%20Hankel%20matrices&rft.jtitle=ACM%20communications%20in%20computer%20algebra&rft.au=Belhaj,%20Skander&rft.date=2013-01-15&rft.volume=46&rft.issue=3/4&rft.spage=74&rft.epage=75&rft.pages=74-75&rft.issn=1932-2240&rft_id=info:doi/10.1145/2429135.2429140&rft_dat=%3Ccrossref%3E10_1145_2429135_2429140%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true