Surface Sulfur Detection via Remote Sensing and Onboard Classification
Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with micro...
Gespeichert in:
Veröffentlicht in: | ACM transactions on intelligent systems and technology 2012-09, Vol.3 (4), p.1-20 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | ACM transactions on intelligent systems and technology |
container_volume | 3 |
creator | Mandrake, Lukas Rebbapragada, Umaa Wagstaff, Kiri L. Thompson, David Chien, Steve Tran, Daniel Pappalardo, Robert T. Gleeson, Damhnait Castaño, Rebecca |
description | Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with microbial activity at the Borup Fiord glacial springs in Canada, a location that may provide an analogue to other icy environments such as Europa.
This article evaluates automated classifiers for detecting sulfur in remote sensing observations by the hyperion spectrometer on the EO-1 spacecraft. We determined that a data-driven machine learning solution was needed because the sulfur could not be detected by simply matching observations to sulfur lab spectra. We also evaluated several methods (manual and automated) for identifying the most relevant attributes (spectral wavelengths) needed for successful sulfur detection. Our findings include (1) the Borup Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; (2) as expected, classifiers using Gaussian kernels outperformed those based on linear kernels, and should be adopted when onboard computational constraints permit; and (3) Recursive Feature Elimination selected sensible and effective features for use in the computationally constrained environment onboard EO-1. This study helped guide the selection of algorithm parameters and configuration for the classification system currently operational on EO-1. Finally, we discuss implications for a similar onboard classification system for a future Europa orbiter. |
doi_str_mv | 10.1145/2337542.2337562 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_2337542_2337562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2337542_2337562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-953d623091d2e2dabcc10efb6db9ca02e992c37974b91846175954d23e9578463</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOaefc0X6JZ7kzTmUarTwWDg9Lmk-SORrpWkFfz2dlo8L-cc7uVy-RFyC2wNIOQGOVdS4PrXS7wgCwSpilIDXv5nJq7JKucPNklo1HC3INvjmIKxnh7HNoyJPvjB2yH2Hf2Khr74Uz9MM9_l2L1T0zl66JreJEer1uQcQ7TmvH1DroJps1_NviRv28fX6rnYH5521f2-sChgKLTkrkTONDj06ExjLTAfmtI12hqGXmu0XGklmuk7UYKSWgqH3Gupps6XZPN316Y-5-RD_ZniyaTvGlh9JlHPJOqZBP8BwN1Pag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Sulfur Detection via Remote Sensing and Onboard Classification</title><source>ACM Digital Library Complete</source><creator>Mandrake, Lukas ; Rebbapragada, Umaa ; Wagstaff, Kiri L. ; Thompson, David ; Chien, Steve ; Tran, Daniel ; Pappalardo, Robert T. ; Gleeson, Damhnait ; Castaño, Rebecca</creator><creatorcontrib>Mandrake, Lukas ; Rebbapragada, Umaa ; Wagstaff, Kiri L. ; Thompson, David ; Chien, Steve ; Tran, Daniel ; Pappalardo, Robert T. ; Gleeson, Damhnait ; Castaño, Rebecca</creatorcontrib><description>Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with microbial activity at the Borup Fiord glacial springs in Canada, a location that may provide an analogue to other icy environments such as Europa.
This article evaluates automated classifiers for detecting sulfur in remote sensing observations by the hyperion spectrometer on the EO-1 spacecraft. We determined that a data-driven machine learning solution was needed because the sulfur could not be detected by simply matching observations to sulfur lab spectra. We also evaluated several methods (manual and automated) for identifying the most relevant attributes (spectral wavelengths) needed for successful sulfur detection. Our findings include (1) the Borup Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; (2) as expected, classifiers using Gaussian kernels outperformed those based on linear kernels, and should be adopted when onboard computational constraints permit; and (3) Recursive Feature Elimination selected sensible and effective features for use in the computationally constrained environment onboard EO-1. This study helped guide the selection of algorithm parameters and configuration for the classification system currently operational on EO-1. Finally, we discuss implications for a similar onboard classification system for a future Europa orbiter.</description><identifier>ISSN: 2157-6904</identifier><identifier>EISSN: 2157-6912</identifier><identifier>DOI: 10.1145/2337542.2337562</identifier><language>eng</language><ispartof>ACM transactions on intelligent systems and technology, 2012-09, Vol.3 (4), p.1-20</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-953d623091d2e2dabcc10efb6db9ca02e992c37974b91846175954d23e9578463</citedby><cites>FETCH-LOGICAL-c241t-953d623091d2e2dabcc10efb6db9ca02e992c37974b91846175954d23e9578463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mandrake, Lukas</creatorcontrib><creatorcontrib>Rebbapragada, Umaa</creatorcontrib><creatorcontrib>Wagstaff, Kiri L.</creatorcontrib><creatorcontrib>Thompson, David</creatorcontrib><creatorcontrib>Chien, Steve</creatorcontrib><creatorcontrib>Tran, Daniel</creatorcontrib><creatorcontrib>Pappalardo, Robert T.</creatorcontrib><creatorcontrib>Gleeson, Damhnait</creatorcontrib><creatorcontrib>Castaño, Rebecca</creatorcontrib><title>Surface Sulfur Detection via Remote Sensing and Onboard Classification</title><title>ACM transactions on intelligent systems and technology</title><description>Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with microbial activity at the Borup Fiord glacial springs in Canada, a location that may provide an analogue to other icy environments such as Europa.
This article evaluates automated classifiers for detecting sulfur in remote sensing observations by the hyperion spectrometer on the EO-1 spacecraft. We determined that a data-driven machine learning solution was needed because the sulfur could not be detected by simply matching observations to sulfur lab spectra. We also evaluated several methods (manual and automated) for identifying the most relevant attributes (spectral wavelengths) needed for successful sulfur detection. Our findings include (1) the Borup Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; (2) as expected, classifiers using Gaussian kernels outperformed those based on linear kernels, and should be adopted when onboard computational constraints permit; and (3) Recursive Feature Elimination selected sensible and effective features for use in the computationally constrained environment onboard EO-1. This study helped guide the selection of algorithm parameters and configuration for the classification system currently operational on EO-1. Finally, we discuss implications for a similar onboard classification system for a future Europa orbiter.</description><issn>2157-6904</issn><issn>2157-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOaefc0X6JZ7kzTmUarTwWDg9Lmk-SORrpWkFfz2dlo8L-cc7uVy-RFyC2wNIOQGOVdS4PrXS7wgCwSpilIDXv5nJq7JKucPNklo1HC3INvjmIKxnh7HNoyJPvjB2yH2Hf2Khr74Uz9MM9_l2L1T0zl66JreJEer1uQcQ7TmvH1DroJps1_NviRv28fX6rnYH5521f2-sChgKLTkrkTONDj06ExjLTAfmtI12hqGXmu0XGklmuk7UYKSWgqH3Gupps6XZPN316Y-5-RD_ZniyaTvGlh9JlHPJOqZBP8BwN1Pag</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Mandrake, Lukas</creator><creator>Rebbapragada, Umaa</creator><creator>Wagstaff, Kiri L.</creator><creator>Thompson, David</creator><creator>Chien, Steve</creator><creator>Tran, Daniel</creator><creator>Pappalardo, Robert T.</creator><creator>Gleeson, Damhnait</creator><creator>Castaño, Rebecca</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201209</creationdate><title>Surface Sulfur Detection via Remote Sensing and Onboard Classification</title><author>Mandrake, Lukas ; Rebbapragada, Umaa ; Wagstaff, Kiri L. ; Thompson, David ; Chien, Steve ; Tran, Daniel ; Pappalardo, Robert T. ; Gleeson, Damhnait ; Castaño, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-953d623091d2e2dabcc10efb6db9ca02e992c37974b91846175954d23e9578463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandrake, Lukas</creatorcontrib><creatorcontrib>Rebbapragada, Umaa</creatorcontrib><creatorcontrib>Wagstaff, Kiri L.</creatorcontrib><creatorcontrib>Thompson, David</creatorcontrib><creatorcontrib>Chien, Steve</creatorcontrib><creatorcontrib>Tran, Daniel</creatorcontrib><creatorcontrib>Pappalardo, Robert T.</creatorcontrib><creatorcontrib>Gleeson, Damhnait</creatorcontrib><creatorcontrib>Castaño, Rebecca</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on intelligent systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandrake, Lukas</au><au>Rebbapragada, Umaa</au><au>Wagstaff, Kiri L.</au><au>Thompson, David</au><au>Chien, Steve</au><au>Tran, Daniel</au><au>Pappalardo, Robert T.</au><au>Gleeson, Damhnait</au><au>Castaño, Rebecca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Sulfur Detection via Remote Sensing and Onboard Classification</atitle><jtitle>ACM transactions on intelligent systems and technology</jtitle><date>2012-09</date><risdate>2012</risdate><volume>3</volume><issue>4</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>2157-6904</issn><eissn>2157-6912</eissn><abstract>Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with microbial activity at the Borup Fiord glacial springs in Canada, a location that may provide an analogue to other icy environments such as Europa.
This article evaluates automated classifiers for detecting sulfur in remote sensing observations by the hyperion spectrometer on the EO-1 spacecraft. We determined that a data-driven machine learning solution was needed because the sulfur could not be detected by simply matching observations to sulfur lab spectra. We also evaluated several methods (manual and automated) for identifying the most relevant attributes (spectral wavelengths) needed for successful sulfur detection. Our findings include (1) the Borup Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; (2) as expected, classifiers using Gaussian kernels outperformed those based on linear kernels, and should be adopted when onboard computational constraints permit; and (3) Recursive Feature Elimination selected sensible and effective features for use in the computationally constrained environment onboard EO-1. This study helped guide the selection of algorithm parameters and configuration for the classification system currently operational on EO-1. Finally, we discuss implications for a similar onboard classification system for a future Europa orbiter.</abstract><doi>10.1145/2337542.2337562</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-6904 |
ispartof | ACM transactions on intelligent systems and technology, 2012-09, Vol.3 (4), p.1-20 |
issn | 2157-6904 2157-6912 |
language | eng |
recordid | cdi_crossref_primary_10_1145_2337542_2337562 |
source | ACM Digital Library Complete |
title | Surface Sulfur Detection via Remote Sensing and Onboard Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Sulfur%20Detection%20via%20Remote%20Sensing%20and%20Onboard%20Classification&rft.jtitle=ACM%20transactions%20on%20intelligent%20systems%20and%20technology&rft.au=Mandrake,%20Lukas&rft.date=2012-09&rft.volume=3&rft.issue=4&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=2157-6904&rft.eissn=2157-6912&rft_id=info:doi/10.1145/2337542.2337562&rft_dat=%3Ccrossref%3E10_1145_2337542_2337562%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |