Surface Sulfur Detection via Remote Sensing and Onboard Classification

Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on intelligent systems and technology 2012-09, Vol.3 (4), p.1-20
Hauptverfasser: Mandrake, Lukas, Rebbapragada, Umaa, Wagstaff, Kiri L., Thompson, David, Chien, Steve, Tran, Daniel, Pappalardo, Robert T., Gleeson, Damhnait, Castaño, Rebecca
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 4
container_start_page 1
container_title ACM transactions on intelligent systems and technology
container_volume 3
creator Mandrake, Lukas
Rebbapragada, Umaa
Wagstaff, Kiri L.
Thompson, David
Chien, Steve
Tran, Daniel
Pappalardo, Robert T.
Gleeson, Damhnait
Castaño, Rebecca
description Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with microbial activity at the Borup Fiord glacial springs in Canada, a location that may provide an analogue to other icy environments such as Europa. This article evaluates automated classifiers for detecting sulfur in remote sensing observations by the hyperion spectrometer on the EO-1 spacecraft. We determined that a data-driven machine learning solution was needed because the sulfur could not be detected by simply matching observations to sulfur lab spectra. We also evaluated several methods (manual and automated) for identifying the most relevant attributes (spectral wavelengths) needed for successful sulfur detection. Our findings include (1) the Borup Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; (2) as expected, classifiers using Gaussian kernels outperformed those based on linear kernels, and should be adopted when onboard computational constraints permit; and (3) Recursive Feature Elimination selected sensible and effective features for use in the computationally constrained environment onboard EO-1. This study helped guide the selection of algorithm parameters and configuration for the classification system currently operational on EO-1. Finally, we discuss implications for a similar onboard classification system for a future Europa orbiter.
doi_str_mv 10.1145/2337542.2337562
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_2337542_2337562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2337542_2337562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-953d623091d2e2dabcc10efb6db9ca02e992c37974b91846175954d23e9578463</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOaefc0X6JZ7kzTmUarTwWDg9Lmk-SORrpWkFfz2dlo8L-cc7uVy-RFyC2wNIOQGOVdS4PrXS7wgCwSpilIDXv5nJq7JKucPNklo1HC3INvjmIKxnh7HNoyJPvjB2yH2Hf2Khr74Uz9MM9_l2L1T0zl66JreJEer1uQcQ7TmvH1DroJps1_NviRv28fX6rnYH5521f2-sChgKLTkrkTONDj06ExjLTAfmtI12hqGXmu0XGklmuk7UYKSWgqH3Gupps6XZPN316Y-5-RD_ZniyaTvGlh9JlHPJOqZBP8BwN1Pag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Surface Sulfur Detection via Remote Sensing and Onboard Classification</title><source>ACM Digital Library Complete</source><creator>Mandrake, Lukas ; Rebbapragada, Umaa ; Wagstaff, Kiri L. ; Thompson, David ; Chien, Steve ; Tran, Daniel ; Pappalardo, Robert T. ; Gleeson, Damhnait ; Castaño, Rebecca</creator><creatorcontrib>Mandrake, Lukas ; Rebbapragada, Umaa ; Wagstaff, Kiri L. ; Thompson, David ; Chien, Steve ; Tran, Daniel ; Pappalardo, Robert T. ; Gleeson, Damhnait ; Castaño, Rebecca</creatorcontrib><description>Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with microbial activity at the Borup Fiord glacial springs in Canada, a location that may provide an analogue to other icy environments such as Europa. This article evaluates automated classifiers for detecting sulfur in remote sensing observations by the hyperion spectrometer on the EO-1 spacecraft. We determined that a data-driven machine learning solution was needed because the sulfur could not be detected by simply matching observations to sulfur lab spectra. We also evaluated several methods (manual and automated) for identifying the most relevant attributes (spectral wavelengths) needed for successful sulfur detection. Our findings include (1) the Borup Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; (2) as expected, classifiers using Gaussian kernels outperformed those based on linear kernels, and should be adopted when onboard computational constraints permit; and (3) Recursive Feature Elimination selected sensible and effective features for use in the computationally constrained environment onboard EO-1. This study helped guide the selection of algorithm parameters and configuration for the classification system currently operational on EO-1. Finally, we discuss implications for a similar onboard classification system for a future Europa orbiter.</description><identifier>ISSN: 2157-6904</identifier><identifier>EISSN: 2157-6912</identifier><identifier>DOI: 10.1145/2337542.2337562</identifier><language>eng</language><ispartof>ACM transactions on intelligent systems and technology, 2012-09, Vol.3 (4), p.1-20</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-953d623091d2e2dabcc10efb6db9ca02e992c37974b91846175954d23e9578463</citedby><cites>FETCH-LOGICAL-c241t-953d623091d2e2dabcc10efb6db9ca02e992c37974b91846175954d23e9578463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mandrake, Lukas</creatorcontrib><creatorcontrib>Rebbapragada, Umaa</creatorcontrib><creatorcontrib>Wagstaff, Kiri L.</creatorcontrib><creatorcontrib>Thompson, David</creatorcontrib><creatorcontrib>Chien, Steve</creatorcontrib><creatorcontrib>Tran, Daniel</creatorcontrib><creatorcontrib>Pappalardo, Robert T.</creatorcontrib><creatorcontrib>Gleeson, Damhnait</creatorcontrib><creatorcontrib>Castaño, Rebecca</creatorcontrib><title>Surface Sulfur Detection via Remote Sensing and Onboard Classification</title><title>ACM transactions on intelligent systems and technology</title><description>Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with microbial activity at the Borup Fiord glacial springs in Canada, a location that may provide an analogue to other icy environments such as Europa. This article evaluates automated classifiers for detecting sulfur in remote sensing observations by the hyperion spectrometer on the EO-1 spacecraft. We determined that a data-driven machine learning solution was needed because the sulfur could not be detected by simply matching observations to sulfur lab spectra. We also evaluated several methods (manual and automated) for identifying the most relevant attributes (spectral wavelengths) needed for successful sulfur detection. Our findings include (1) the Borup Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; (2) as expected, classifiers using Gaussian kernels outperformed those based on linear kernels, and should be adopted when onboard computational constraints permit; and (3) Recursive Feature Elimination selected sensible and effective features for use in the computationally constrained environment onboard EO-1. This study helped guide the selection of algorithm parameters and configuration for the classification system currently operational on EO-1. Finally, we discuss implications for a similar onboard classification system for a future Europa orbiter.</description><issn>2157-6904</issn><issn>2157-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOaefc0X6JZ7kzTmUarTwWDg9Lmk-SORrpWkFfz2dlo8L-cc7uVy-RFyC2wNIOQGOVdS4PrXS7wgCwSpilIDXv5nJq7JKucPNklo1HC3INvjmIKxnh7HNoyJPvjB2yH2Hf2Khr74Uz9MM9_l2L1T0zl66JreJEer1uQcQ7TmvH1DroJps1_NviRv28fX6rnYH5521f2-sChgKLTkrkTONDj06ExjLTAfmtI12hqGXmu0XGklmuk7UYKSWgqH3Gupps6XZPN316Y-5-RD_ZniyaTvGlh9JlHPJOqZBP8BwN1Pag</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Mandrake, Lukas</creator><creator>Rebbapragada, Umaa</creator><creator>Wagstaff, Kiri L.</creator><creator>Thompson, David</creator><creator>Chien, Steve</creator><creator>Tran, Daniel</creator><creator>Pappalardo, Robert T.</creator><creator>Gleeson, Damhnait</creator><creator>Castaño, Rebecca</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201209</creationdate><title>Surface Sulfur Detection via Remote Sensing and Onboard Classification</title><author>Mandrake, Lukas ; Rebbapragada, Umaa ; Wagstaff, Kiri L. ; Thompson, David ; Chien, Steve ; Tran, Daniel ; Pappalardo, Robert T. ; Gleeson, Damhnait ; Castaño, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-953d623091d2e2dabcc10efb6db9ca02e992c37974b91846175954d23e9578463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandrake, Lukas</creatorcontrib><creatorcontrib>Rebbapragada, Umaa</creatorcontrib><creatorcontrib>Wagstaff, Kiri L.</creatorcontrib><creatorcontrib>Thompson, David</creatorcontrib><creatorcontrib>Chien, Steve</creatorcontrib><creatorcontrib>Tran, Daniel</creatorcontrib><creatorcontrib>Pappalardo, Robert T.</creatorcontrib><creatorcontrib>Gleeson, Damhnait</creatorcontrib><creatorcontrib>Castaño, Rebecca</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on intelligent systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandrake, Lukas</au><au>Rebbapragada, Umaa</au><au>Wagstaff, Kiri L.</au><au>Thompson, David</au><au>Chien, Steve</au><au>Tran, Daniel</au><au>Pappalardo, Robert T.</au><au>Gleeson, Damhnait</au><au>Castaño, Rebecca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Sulfur Detection via Remote Sensing and Onboard Classification</atitle><jtitle>ACM transactions on intelligent systems and technology</jtitle><date>2012-09</date><risdate>2012</risdate><volume>3</volume><issue>4</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>2157-6904</issn><eissn>2157-6912</eissn><abstract>Orbital remote sensing provides a powerful way to efficiently survey targets such as the Earth and other planets and moons for features of interest. One such feature of astrobiological relevance is the presence of surface sulfur deposits. These deposits have been observed to be associated with microbial activity at the Borup Fiord glacial springs in Canada, a location that may provide an analogue to other icy environments such as Europa. This article evaluates automated classifiers for detecting sulfur in remote sensing observations by the hyperion spectrometer on the EO-1 spacecraft. We determined that a data-driven machine learning solution was needed because the sulfur could not be detected by simply matching observations to sulfur lab spectra. We also evaluated several methods (manual and automated) for identifying the most relevant attributes (spectral wavelengths) needed for successful sulfur detection. Our findings include (1) the Borup Fiord sulfur deposits were best modeled as containing two sub-populations: sulfur on ice and sulfur on rock; (2) as expected, classifiers using Gaussian kernels outperformed those based on linear kernels, and should be adopted when onboard computational constraints permit; and (3) Recursive Feature Elimination selected sensible and effective features for use in the computationally constrained environment onboard EO-1. This study helped guide the selection of algorithm parameters and configuration for the classification system currently operational on EO-1. Finally, we discuss implications for a similar onboard classification system for a future Europa orbiter.</abstract><doi>10.1145/2337542.2337562</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2157-6904
ispartof ACM transactions on intelligent systems and technology, 2012-09, Vol.3 (4), p.1-20
issn 2157-6904
2157-6912
language eng
recordid cdi_crossref_primary_10_1145_2337542_2337562
source ACM Digital Library Complete
title Surface Sulfur Detection via Remote Sensing and Onboard Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Sulfur%20Detection%20via%20Remote%20Sensing%20and%20Onboard%20Classification&rft.jtitle=ACM%20transactions%20on%20intelligent%20systems%20and%20technology&rft.au=Mandrake,%20Lukas&rft.date=2012-09&rft.volume=3&rft.issue=4&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=2157-6904&rft.eissn=2157-6912&rft_id=info:doi/10.1145/2337542.2337562&rft_dat=%3Ccrossref%3E10_1145_2337542_2337562%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true