Estimating the selectivity of tf-idf based cosine similarity predicates
An increasing number of database applications today require sophisticated approximate string matching capabilities. Examples of such application areas include data integration and data cleaning. Cosine similarity has proven to be a robust metric for scoring the similarity between two strings, and it...
Gespeichert in:
Veröffentlicht in: | SIGMOD record 2007-06, Vol.36 (2), p.7-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2 |
container_start_page | 7 |
container_title | SIGMOD record |
container_volume | 36 |
creator | Tata, Sandeep Patel, Jignesh M. |
description | An increasing number of database applications today require sophisticated approximate string matching capabilities. Examples of such application areas include data integration and data cleaning. Cosine similarity has proven to be a robust metric for scoring the similarity between two strings, and it is increasingly being used in complex queries. An immediate challenge faced by current database optimizers is to find accurate and efficient methods for estimating the selectivity of cosine similarity predicates. To the best of our knowledge, there are no known methods for this problem. In this paper, we present the first approach for estimating the selectivity of tf.idf based cosine similarity predicates. We evaluate our approach on three different real datasets and show that our method often produces estimates that are within 40% of the actual selectivity. |
doi_str_mv | 10.1145/1328854.1328855 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_1328854_1328855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_1328854_1328855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-16277af2f081e57e591d95c59b157da27cc1de9d2b539a91d4705be01ee54b73</originalsourceid><addsrcrecordid>eNotj7FqwzAURTW00DTt3FU_4ERP8rPksYQ0LQSyZDey9NSqOHGQRCF_X4d4OsO9XO5h7A3ECqDGNShpDNarO_GBLQQ0qkIjzBN7zvlXCDDQiAXbbXOJJ1vi-ZuXH-KZBnIl_sVy5WPgJVTRB97bTJ67McfzVImnONh0a1wS-ehsofzCHoMdMr3OXLLjx_a4-az2h93X5n1fOVlDqaCRWtsggzBAqAlb8C06bHtA7a3UzoGn1sseVWunsNYCexJAhHWv1ZKt77MujTknCt0lTffTtQPR3dS7WX0mqn-SME5B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating the selectivity of tf-idf based cosine similarity predicates</title><source>ACM Digital Library Complete</source><creator>Tata, Sandeep ; Patel, Jignesh M.</creator><creatorcontrib>Tata, Sandeep ; Patel, Jignesh M.</creatorcontrib><description>An increasing number of database applications today require sophisticated approximate string matching capabilities. Examples of such application areas include data integration and data cleaning. Cosine similarity has proven to be a robust metric for scoring the similarity between two strings, and it is increasingly being used in complex queries. An immediate challenge faced by current database optimizers is to find accurate and efficient methods for estimating the selectivity of cosine similarity predicates. To the best of our knowledge, there are no known methods for this problem. In this paper, we present the first approach for estimating the selectivity of tf.idf based cosine similarity predicates. We evaluate our approach on three different real datasets and show that our method often produces estimates that are within 40% of the actual selectivity.</description><identifier>ISSN: 0163-5808</identifier><identifier>DOI: 10.1145/1328854.1328855</identifier><language>eng</language><ispartof>SIGMOD record, 2007-06, Vol.36 (2), p.7-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-16277af2f081e57e591d95c59b157da27cc1de9d2b539a91d4705be01ee54b73</citedby><cites>FETCH-LOGICAL-c241t-16277af2f081e57e591d95c59b157da27cc1de9d2b539a91d4705be01ee54b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tata, Sandeep</creatorcontrib><creatorcontrib>Patel, Jignesh M.</creatorcontrib><title>Estimating the selectivity of tf-idf based cosine similarity predicates</title><title>SIGMOD record</title><description>An increasing number of database applications today require sophisticated approximate string matching capabilities. Examples of such application areas include data integration and data cleaning. Cosine similarity has proven to be a robust metric for scoring the similarity between two strings, and it is increasingly being used in complex queries. An immediate challenge faced by current database optimizers is to find accurate and efficient methods for estimating the selectivity of cosine similarity predicates. To the best of our knowledge, there are no known methods for this problem. In this paper, we present the first approach for estimating the selectivity of tf.idf based cosine similarity predicates. We evaluate our approach on three different real datasets and show that our method often produces estimates that are within 40% of the actual selectivity.</description><issn>0163-5808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotj7FqwzAURTW00DTt3FU_4ERP8rPksYQ0LQSyZDey9NSqOHGQRCF_X4d4OsO9XO5h7A3ECqDGNShpDNarO_GBLQQ0qkIjzBN7zvlXCDDQiAXbbXOJJ1vi-ZuXH-KZBnIl_sVy5WPgJVTRB97bTJ67McfzVImnONh0a1wS-ehsofzCHoMdMr3OXLLjx_a4-az2h93X5n1fOVlDqaCRWtsggzBAqAlb8C06bHtA7a3UzoGn1sseVWunsNYCexJAhHWv1ZKt77MujTknCt0lTffTtQPR3dS7WX0mqn-SME5B</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Tata, Sandeep</creator><creator>Patel, Jignesh M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200706</creationdate><title>Estimating the selectivity of tf-idf based cosine similarity predicates</title><author>Tata, Sandeep ; Patel, Jignesh M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-16277af2f081e57e591d95c59b157da27cc1de9d2b539a91d4705be01ee54b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Tata, Sandeep</creatorcontrib><creatorcontrib>Patel, Jignesh M.</creatorcontrib><collection>CrossRef</collection><jtitle>SIGMOD record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tata, Sandeep</au><au>Patel, Jignesh M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the selectivity of tf-idf based cosine similarity predicates</atitle><jtitle>SIGMOD record</jtitle><date>2007-06</date><risdate>2007</risdate><volume>36</volume><issue>2</issue><spage>7</spage><epage>12</epage><pages>7-12</pages><issn>0163-5808</issn><abstract>An increasing number of database applications today require sophisticated approximate string matching capabilities. Examples of such application areas include data integration and data cleaning. Cosine similarity has proven to be a robust metric for scoring the similarity between two strings, and it is increasingly being used in complex queries. An immediate challenge faced by current database optimizers is to find accurate and efficient methods for estimating the selectivity of cosine similarity predicates. To the best of our knowledge, there are no known methods for this problem. In this paper, we present the first approach for estimating the selectivity of tf.idf based cosine similarity predicates. We evaluate our approach on three different real datasets and show that our method often produces estimates that are within 40% of the actual selectivity.</abstract><doi>10.1145/1328854.1328855</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-5808 |
ispartof | SIGMOD record, 2007-06, Vol.36 (2), p.7-12 |
issn | 0163-5808 |
language | eng |
recordid | cdi_crossref_primary_10_1145_1328854_1328855 |
source | ACM Digital Library Complete |
title | Estimating the selectivity of tf-idf based cosine similarity predicates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20selectivity%20of%20tf-idf%20based%20cosine%20similarity%20predicates&rft.jtitle=SIGMOD%20record&rft.au=Tata,%20Sandeep&rft.date=2007-06&rft.volume=36&rft.issue=2&rft.spage=7&rft.epage=12&rft.pages=7-12&rft.issn=0163-5808&rft_id=info:doi/10.1145/1328854.1328855&rft_dat=%3Ccrossref%3E10_1145_1328854_1328855%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |