Accurate and efficient regression modeling for microarchitectural performance and power prediction

We propose regression modeling as an efficient approach for accurately predicting performance and power for various applications executing on any microprocessor configuration in a large microarchitectural design space. This paper addresses fundamental challenges in microarchitectural simulation cost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LEE, Benjamin C, BROOKS, David M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 5
container_start_page 185
container_title
container_volume 40
creator LEE, Benjamin C
BROOKS, David M
description We propose regression modeling as an efficient approach for accurately predicting performance and power for various applications executing on any microprocessor configuration in a large microarchitectural design space. This paper addresses fundamental challenges in microarchitectural simulation cost by reducing the number of required simulations and using simulated results more effectively via statistical modeling and inference.Specifically, we derive and validate regression models for performance and power. Such models enable computationally efficient statistical inference, requiring the simulation of only 1 in 5 million points of a joint microarchitecture-application design space while achieving median error rates as low as 4.1 percent for performance and 4.3 percent for power. Although both models achieve similar accuracy, the sources of accuracy are strikingly different. We present optimizations for a baseline regression model to obtain (1) application-specific models to maximize accuracy in performance prediction and (2) regional power models leveraging only the most relevant samples from the microarchitectural design space to maximize accuracy in power prediction. Assessing sensitivity to the number of samples simulated for model formulation, we find fewer than 4,000 samples from a design space of approximately 22 billion points are sufficient. Collectively, our results suggest significant potential in accurate and efficient statistical inference for microarchitectural design space exploration via regression models.
doi_str_mv 10.1145/1168917.1168881
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_1168917_1168881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30934112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1782-49767d6598c7fb6d0ede15c44835ce46d4e0b68b149f699d3fa38b192d890d7a3</originalsourceid><addsrcrecordid>eNqFUUtLAzEQDj7Atnr2uhe9rc1sstnkWIovKHhR8LZkk0mN7Mtki_jvTWnBo6dh-B7MfB8h10DvAHi5BBBSQXW3n1LCCZmB4iwvpXg_JXMoVakYL4GekRkFkQAl6QWZx_hJKUgQMCPNyphd0BNmurcZOueNx37KAm4DxuiHPusGi63vt5kbQtZ5EwYdzIef0ExJ2WYjhoR0ujcHk3H4xpCNAa03UzK4JOdOtxGvjnNB3h7uX9dP-ebl8Xm92uQGKlnkXFWisiLdaCrXCEvRIpSGc8lKg1xYjrQRsgGunFDKMqdZ2lRhpaK20mxBbg--Yxi-dhinuvPRYNvqHoddrBlNaQAU_xILxYRkdE9cHojp5xgDunoMvtPhpwZa7xuojw3UxwaS4uZoraPRrQspFR__ZJIryRRlv5x-hLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29368302</pqid></control><display><type>conference_proceeding</type><title>Accurate and efficient regression modeling for microarchitectural performance and power prediction</title><source>ACM Digital Library Complete</source><creator>LEE, Benjamin C ; BROOKS, David M</creator><creatorcontrib>LEE, Benjamin C ; BROOKS, David M</creatorcontrib><description>We propose regression modeling as an efficient approach for accurately predicting performance and power for various applications executing on any microprocessor configuration in a large microarchitectural design space. This paper addresses fundamental challenges in microarchitectural simulation cost by reducing the number of required simulations and using simulated results more effectively via statistical modeling and inference.Specifically, we derive and validate regression models for performance and power. Such models enable computationally efficient statistical inference, requiring the simulation of only 1 in 5 million points of a joint microarchitecture-application design space while achieving median error rates as low as 4.1 percent for performance and 4.3 percent for power. Although both models achieve similar accuracy, the sources of accuracy are strikingly different. We present optimizations for a baseline regression model to obtain (1) application-specific models to maximize accuracy in performance prediction and (2) regional power models leveraging only the most relevant samples from the microarchitectural design space to maximize accuracy in power prediction. Assessing sensitivity to the number of samples simulated for model formulation, we find fewer than 4,000 samples from a design space of approximately 22 billion points are sufficient. Collectively, our results suggest significant potential in accurate and efficient statistical inference for microarchitectural design space exploration via regression models.</description><identifier>ISSN: 0163-5980</identifier><identifier>ISBN: 1595934510</identifier><identifier>ISBN: 9781595934512</identifier><identifier>EISSN: 1943-586X</identifier><identifier>DOI: 10.1145/1168917.1168881</identifier><identifier>CODEN: OSRED8</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computers, microcomputers ; Electronics ; Exact sciences and technology ; Hardware ; Programming languages ; Software</subject><ispartof>ASPLOS XII : Twelfth International Conference on Architectural Support for Programming Languages and Operating Systems, October 21-25, 2006, San Jose, California, USA, 2006, Vol.40 (5), p.185-194</ispartof><rights>2007 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1782-49767d6598c7fb6d0ede15c44835ce46d4e0b68b149f699d3fa38b192d890d7a3</citedby><cites>FETCH-LOGICAL-c1782-49767d6598c7fb6d0ede15c44835ce46d4e0b68b149f699d3fa38b192d890d7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18498390$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LEE, Benjamin C</creatorcontrib><creatorcontrib>BROOKS, David M</creatorcontrib><title>Accurate and efficient regression modeling for microarchitectural performance and power prediction</title><title>ASPLOS XII : Twelfth International Conference on Architectural Support for Programming Languages and Operating Systems, October 21-25, 2006, San Jose, California, USA</title><description>We propose regression modeling as an efficient approach for accurately predicting performance and power for various applications executing on any microprocessor configuration in a large microarchitectural design space. This paper addresses fundamental challenges in microarchitectural simulation cost by reducing the number of required simulations and using simulated results more effectively via statistical modeling and inference.Specifically, we derive and validate regression models for performance and power. Such models enable computationally efficient statistical inference, requiring the simulation of only 1 in 5 million points of a joint microarchitecture-application design space while achieving median error rates as low as 4.1 percent for performance and 4.3 percent for power. Although both models achieve similar accuracy, the sources of accuracy are strikingly different. We present optimizations for a baseline regression model to obtain (1) application-specific models to maximize accuracy in performance prediction and (2) regional power models leveraging only the most relevant samples from the microarchitectural design space to maximize accuracy in power prediction. Assessing sensitivity to the number of samples simulated for model formulation, we find fewer than 4,000 samples from a design space of approximately 22 billion points are sufficient. Collectively, our results suggest significant potential in accurate and efficient statistical inference for microarchitectural design space exploration via regression models.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computers, microcomputers</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Hardware</subject><subject>Programming languages</subject><subject>Software</subject><issn>0163-5980</issn><issn>1943-586X</issn><isbn>1595934510</isbn><isbn>9781595934512</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqFUUtLAzEQDj7Atnr2uhe9rc1sstnkWIovKHhR8LZkk0mN7Mtki_jvTWnBo6dh-B7MfB8h10DvAHi5BBBSQXW3n1LCCZmB4iwvpXg_JXMoVakYL4GekRkFkQAl6QWZx_hJKUgQMCPNyphd0BNmurcZOueNx37KAm4DxuiHPusGi63vt5kbQtZ5EwYdzIef0ExJ2WYjhoR0ujcHk3H4xpCNAa03UzK4JOdOtxGvjnNB3h7uX9dP-ebl8Xm92uQGKlnkXFWisiLdaCrXCEvRIpSGc8lKg1xYjrQRsgGunFDKMqdZ2lRhpaK20mxBbg--Yxi-dhinuvPRYNvqHoddrBlNaQAU_xILxYRkdE9cHojp5xgDunoMvtPhpwZa7xuojw3UxwaS4uZoraPRrQspFR__ZJIryRRlv5x-hLk</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>LEE, Benjamin C</creator><creator>BROOKS, David M</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061201</creationdate><title>Accurate and efficient regression modeling for microarchitectural performance and power prediction</title><author>LEE, Benjamin C ; BROOKS, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1782-49767d6598c7fb6d0ede15c44835ce46d4e0b68b149f699d3fa38b192d890d7a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computers, microcomputers</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Hardware</topic><topic>Programming languages</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>LEE, Benjamin C</creatorcontrib><creatorcontrib>BROOKS, David M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEE, Benjamin C</au><au>BROOKS, David M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accurate and efficient regression modeling for microarchitectural performance and power prediction</atitle><btitle>ASPLOS XII : Twelfth International Conference on Architectural Support for Programming Languages and Operating Systems, October 21-25, 2006, San Jose, California, USA</btitle><date>2006-12-01</date><risdate>2006</risdate><volume>40</volume><issue>5</issue><spage>185</spage><epage>194</epage><pages>185-194</pages><issn>0163-5980</issn><eissn>1943-586X</eissn><isbn>1595934510</isbn><isbn>9781595934512</isbn><coden>OSRED8</coden><abstract>We propose regression modeling as an efficient approach for accurately predicting performance and power for various applications executing on any microprocessor configuration in a large microarchitectural design space. This paper addresses fundamental challenges in microarchitectural simulation cost by reducing the number of required simulations and using simulated results more effectively via statistical modeling and inference.Specifically, we derive and validate regression models for performance and power. Such models enable computationally efficient statistical inference, requiring the simulation of only 1 in 5 million points of a joint microarchitecture-application design space while achieving median error rates as low as 4.1 percent for performance and 4.3 percent for power. Although both models achieve similar accuracy, the sources of accuracy are strikingly different. We present optimizations for a baseline regression model to obtain (1) application-specific models to maximize accuracy in performance prediction and (2) regional power models leveraging only the most relevant samples from the microarchitectural design space to maximize accuracy in power prediction. Assessing sensitivity to the number of samples simulated for model formulation, we find fewer than 4,000 samples from a design space of approximately 22 billion points are sufficient. Collectively, our results suggest significant potential in accurate and efficient statistical inference for microarchitectural design space exploration via regression models.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/1168917.1168881</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-5980
ispartof ASPLOS XII : Twelfth International Conference on Architectural Support for Programming Languages and Operating Systems, October 21-25, 2006, San Jose, California, USA, 2006, Vol.40 (5), p.185-194
issn 0163-5980
1943-586X
language eng
recordid cdi_crossref_primary_10_1145_1168917_1168881
source ACM Digital Library Complete
subjects Applied sciences
Computer science
control theory
systems
Computers, microcomputers
Electronics
Exact sciences and technology
Hardware
Programming languages
Software
title Accurate and efficient regression modeling for microarchitectural performance and power prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accurate%20and%20efficient%20regression%20modeling%20for%20microarchitectural%20performance%20and%20power%20prediction&rft.btitle=ASPLOS%20XII%20:%20Twelfth%20International%20Conference%20on%20Architectural%20Support%20for%20Programming%20Languages%20and%20Operating%20Systems,%20October%2021-25,%202006,%20San%20Jose,%20California,%20USA&rft.au=LEE,%20Benjamin%20C&rft.date=2006-12-01&rft.volume=40&rft.issue=5&rft.spage=185&rft.epage=194&rft.pages=185-194&rft.issn=0163-5980&rft.eissn=1943-586X&rft.isbn=1595934510&rft.isbn_list=9781595934512&rft.coden=OSRED8&rft_id=info:doi/10.1145/1168917.1168881&rft_dat=%3Cproquest_cross%3E30934112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29368302&rft_id=info:pmid/&rfr_iscdi=true