Mining student CVS repositories for performance indicators
Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work hab...
Gespeichert in:
Veröffentlicht in: | Software engineering notes 2005-07, Vol.30 (4), p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Software engineering notes |
container_volume | 30 |
creator | Mierle, Keir Laven, Kevin Roweis, Sam Wilson, Greg |
description | Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work habits captured by CVS on performance. This paper outlines our experiences mining and analyzing these repositories. We extracted various quantitative measures of student behaviour and code quality, and attempted to correlate these features with grades. Despite examining 166 features, we find that grade performance cannot be accurately predicted; certainly no predictors stronger than simple lines-of-code were found. |
doi_str_mv | 10.1145/1082983.1083150 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_1082983_1083150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_1082983_1083150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c860-7d4079f0f5c4d87ba26c4f7ee204feb5cf5eb03256d08bd32abda9543a335a633</originalsourceid><addsrcrecordid>eNotz01LxDAUheEsFBxH127zBzpzk5ukqTspfsGICwe3JU1uJOK0JakL_70Vu3oXBw48jN0I2Amh9F6AlY3F3VIUGs7YBoTBSjfKXrDLUj4BhBXGbtjtSxrS8MHL_B1omHn7_sYzTWNJ85gTFR7HzCfKS05u8MTTEJJ3y1iu2Hl0X4Wu127Z8eH-2D5Vh9fH5_buUHlroKqDgrqJELVXwda9k8arWBNJUJF67aOmHlBqE8D2AaXrg2u0QoeonUHcsv3_rc9jKZliN-V0cvmnE9D9abtV261a_AUit0na</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mining student CVS repositories for performance indicators</title><source>ACM Digital Library</source><creator>Mierle, Keir ; Laven, Kevin ; Roweis, Sam ; Wilson, Greg</creator><creatorcontrib>Mierle, Keir ; Laven, Kevin ; Roweis, Sam ; Wilson, Greg</creatorcontrib><description>Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work habits captured by CVS on performance. This paper outlines our experiences mining and analyzing these repositories. We extracted various quantitative measures of student behaviour and code quality, and attempted to correlate these features with grades. Despite examining 166 features, we find that grade performance cannot be accurately predicted; certainly no predictors stronger than simple lines-of-code were found.</description><identifier>ISSN: 0163-5948</identifier><identifier>DOI: 10.1145/1082983.1083150</identifier><language>eng</language><ispartof>Software engineering notes, 2005-07, Vol.30 (4), p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c860-7d4079f0f5c4d87ba26c4f7ee204feb5cf5eb03256d08bd32abda9543a335a633</citedby><cites>FETCH-LOGICAL-c860-7d4079f0f5c4d87ba26c4f7ee204feb5cf5eb03256d08bd32abda9543a335a633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Mierle, Keir</creatorcontrib><creatorcontrib>Laven, Kevin</creatorcontrib><creatorcontrib>Roweis, Sam</creatorcontrib><creatorcontrib>Wilson, Greg</creatorcontrib><title>Mining student CVS repositories for performance indicators</title><title>Software engineering notes</title><description>Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work habits captured by CVS on performance. This paper outlines our experiences mining and analyzing these repositories. We extracted various quantitative measures of student behaviour and code quality, and attempted to correlate these features with grades. Despite examining 166 features, we find that grade performance cannot be accurately predicted; certainly no predictors stronger than simple lines-of-code were found.</description><issn>0163-5948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotz01LxDAUheEsFBxH127zBzpzk5ukqTspfsGICwe3JU1uJOK0JakL_70Vu3oXBw48jN0I2Amh9F6AlY3F3VIUGs7YBoTBSjfKXrDLUj4BhBXGbtjtSxrS8MHL_B1omHn7_sYzTWNJ85gTFR7HzCfKS05u8MTTEJJ3y1iu2Hl0X4Wu127Z8eH-2D5Vh9fH5_buUHlroKqDgrqJELVXwda9k8arWBNJUJF67aOmHlBqE8D2AaXrg2u0QoeonUHcsv3_rc9jKZliN-V0cvmnE9D9abtV261a_AUit0na</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Mierle, Keir</creator><creator>Laven, Kevin</creator><creator>Roweis, Sam</creator><creator>Wilson, Greg</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200507</creationdate><title>Mining student CVS repositories for performance indicators</title><author>Mierle, Keir ; Laven, Kevin ; Roweis, Sam ; Wilson, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c860-7d4079f0f5c4d87ba26c4f7ee204feb5cf5eb03256d08bd32abda9543a335a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mierle, Keir</creatorcontrib><creatorcontrib>Laven, Kevin</creatorcontrib><creatorcontrib>Roweis, Sam</creatorcontrib><creatorcontrib>Wilson, Greg</creatorcontrib><collection>CrossRef</collection><jtitle>Software engineering notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mierle, Keir</au><au>Laven, Kevin</au><au>Roweis, Sam</au><au>Wilson, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining student CVS repositories for performance indicators</atitle><jtitle>Software engineering notes</jtitle><date>2005-07</date><risdate>2005</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0163-5948</issn><abstract>Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work habits captured by CVS on performance. This paper outlines our experiences mining and analyzing these repositories. We extracted various quantitative measures of student behaviour and code quality, and attempted to correlate these features with grades. Despite examining 166 features, we find that grade performance cannot be accurately predicted; certainly no predictors stronger than simple lines-of-code were found.</abstract><doi>10.1145/1082983.1083150</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-5948 |
ispartof | Software engineering notes, 2005-07, Vol.30 (4), p.1-5 |
issn | 0163-5948 |
language | eng |
recordid | cdi_crossref_primary_10_1145_1082983_1083150 |
source | ACM Digital Library |
title | Mining student CVS repositories for performance indicators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T16%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20student%20CVS%20repositories%20for%20performance%20indicators&rft.jtitle=Software%20engineering%20notes&rft.au=Mierle,%20Keir&rft.date=2005-07&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0163-5948&rft_id=info:doi/10.1145/1082983.1083150&rft_dat=%3Ccrossref%3E10_1145_1082983_1083150%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |