Mining student CVS repositories for performance indicators

Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work hab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software engineering notes 2005-07, Vol.30 (4), p.1-5
Hauptverfasser: Mierle, Keir, Laven, Kevin, Roweis, Sam, Wilson, Greg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 4
container_start_page 1
container_title Software engineering notes
container_volume 30
creator Mierle, Keir
Laven, Kevin
Roweis, Sam
Wilson, Greg
description Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work habits captured by CVS on performance. This paper outlines our experiences mining and analyzing these repositories. We extracted various quantitative measures of student behaviour and code quality, and attempted to correlate these features with grades. Despite examining 166 features, we find that grade performance cannot be accurately predicted; certainly no predictors stronger than simple lines-of-code were found.
doi_str_mv 10.1145/1082983.1083150
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_1082983_1083150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_1082983_1083150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c860-7d4079f0f5c4d87ba26c4f7ee204feb5cf5eb03256d08bd32abda9543a335a633</originalsourceid><addsrcrecordid>eNotz01LxDAUheEsFBxH127zBzpzk5ukqTspfsGICwe3JU1uJOK0JakL_70Vu3oXBw48jN0I2Amh9F6AlY3F3VIUGs7YBoTBSjfKXrDLUj4BhBXGbtjtSxrS8MHL_B1omHn7_sYzTWNJ85gTFR7HzCfKS05u8MTTEJJ3y1iu2Hl0X4Wu127Z8eH-2D5Vh9fH5_buUHlroKqDgrqJELVXwda9k8arWBNJUJF67aOmHlBqE8D2AaXrg2u0QoeonUHcsv3_rc9jKZliN-V0cvmnE9D9abtV261a_AUit0na</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mining student CVS repositories for performance indicators</title><source>ACM Digital Library</source><creator>Mierle, Keir ; Laven, Kevin ; Roweis, Sam ; Wilson, Greg</creator><creatorcontrib>Mierle, Keir ; Laven, Kevin ; Roweis, Sam ; Wilson, Greg</creatorcontrib><description>Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work habits captured by CVS on performance. This paper outlines our experiences mining and analyzing these repositories. We extracted various quantitative measures of student behaviour and code quality, and attempted to correlate these features with grades. Despite examining 166 features, we find that grade performance cannot be accurately predicted; certainly no predictors stronger than simple lines-of-code were found.</description><identifier>ISSN: 0163-5948</identifier><identifier>DOI: 10.1145/1082983.1083150</identifier><language>eng</language><ispartof>Software engineering notes, 2005-07, Vol.30 (4), p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c860-7d4079f0f5c4d87ba26c4f7ee204feb5cf5eb03256d08bd32abda9543a335a633</citedby><cites>FETCH-LOGICAL-c860-7d4079f0f5c4d87ba26c4f7ee204feb5cf5eb03256d08bd32abda9543a335a633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Mierle, Keir</creatorcontrib><creatorcontrib>Laven, Kevin</creatorcontrib><creatorcontrib>Roweis, Sam</creatorcontrib><creatorcontrib>Wilson, Greg</creatorcontrib><title>Mining student CVS repositories for performance indicators</title><title>Software engineering notes</title><description>Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work habits captured by CVS on performance. This paper outlines our experiences mining and analyzing these repositories. We extracted various quantitative measures of student behaviour and code quality, and attempted to correlate these features with grades. Despite examining 166 features, we find that grade performance cannot be accurately predicted; certainly no predictors stronger than simple lines-of-code were found.</description><issn>0163-5948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotz01LxDAUheEsFBxH127zBzpzk5ukqTspfsGICwe3JU1uJOK0JakL_70Vu3oXBw48jN0I2Amh9F6AlY3F3VIUGs7YBoTBSjfKXrDLUj4BhBXGbtjtSxrS8MHL_B1omHn7_sYzTWNJ85gTFR7HzCfKS05u8MTTEJJ3y1iu2Hl0X4Wu127Z8eH-2D5Vh9fH5_buUHlroKqDgrqJELVXwda9k8arWBNJUJF67aOmHlBqE8D2AaXrg2u0QoeonUHcsv3_rc9jKZliN-V0cvmnE9D9abtV261a_AUit0na</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Mierle, Keir</creator><creator>Laven, Kevin</creator><creator>Roweis, Sam</creator><creator>Wilson, Greg</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200507</creationdate><title>Mining student CVS repositories for performance indicators</title><author>Mierle, Keir ; Laven, Kevin ; Roweis, Sam ; Wilson, Greg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c860-7d4079f0f5c4d87ba26c4f7ee204feb5cf5eb03256d08bd32abda9543a335a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mierle, Keir</creatorcontrib><creatorcontrib>Laven, Kevin</creatorcontrib><creatorcontrib>Roweis, Sam</creatorcontrib><creatorcontrib>Wilson, Greg</creatorcontrib><collection>CrossRef</collection><jtitle>Software engineering notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mierle, Keir</au><au>Laven, Kevin</au><au>Roweis, Sam</au><au>Wilson, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mining student CVS repositories for performance indicators</atitle><jtitle>Software engineering notes</jtitle><date>2005-07</date><risdate>2005</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0163-5948</issn><abstract>Over 200 CVS repositories representing the assignments of students in a second year undergraduate computer science course have been assembled. This unique data set represents many individuals working separately on identical projects, presenting the opportunity to evaluate the effects of the work habits captured by CVS on performance. This paper outlines our experiences mining and analyzing these repositories. We extracted various quantitative measures of student behaviour and code quality, and attempted to correlate these features with grades. Despite examining 166 features, we find that grade performance cannot be accurately predicted; certainly no predictors stronger than simple lines-of-code were found.</abstract><doi>10.1145/1082983.1083150</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-5948
ispartof Software engineering notes, 2005-07, Vol.30 (4), p.1-5
issn 0163-5948
language eng
recordid cdi_crossref_primary_10_1145_1082983_1083150
source ACM Digital Library
title Mining student CVS repositories for performance indicators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T16%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mining%20student%20CVS%20repositories%20for%20performance%20indicators&rft.jtitle=Software%20engineering%20notes&rft.au=Mierle,%20Keir&rft.date=2005-07&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0163-5948&rft_id=info:doi/10.1145/1082983.1083150&rft_dat=%3Ccrossref%3E10_1145_1082983_1083150%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true