Solving parametric linear systems: an experiment with constraint algebraic programming

Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate X bears no algebraic relation to other objects is violated.We propose to use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGSAM bulletin 2004-06, Vol.38 (2), p.33-46
Hauptverfasser: Ballarin, Clemens, Kauers, Manuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 2
container_start_page 33
container_title SIGSAM bulletin
container_volume 38
creator Ballarin, Clemens
Kauers, Manuel
description Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate X bears no algebraic relation to other objects is violated.We propose to use a technique from model theory known as constraint programming to gain more flexibility, and we show how it can be applied to the Gaussian algorithm to be used for parametric systems. Our experiments suggest that in practice this leads to results comparable to the algorithm for parametric linear systems by Sit [9] --- at least if the parameters are sparse.
doi_str_mv 10.1145/1041791.1041793
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_1041791_1041793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_1041791_1041793</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_1041791_10417933</originalsourceid><addsrcrecordid>eNqVzbEOgjAQgOEbNBHF2bU-ANCzRXA2Gnfdm4YUU9MCuSMmvL0x8gJO3_TnB9ihzBF1WaDUWJ0w_6kWkEg8qqysD3oFa-aXlFhjhQns7314--4pBks2upF8I4LvnCXBE48ucgrL1gZ229kNFNfL43zLGuqZybVmIB8tTQal-d7NfJ9V6v_iA8JZNyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving parametric linear systems: an experiment with constraint algebraic programming</title><source>ACM Digital Library Complete</source><creator>Ballarin, Clemens ; Kauers, Manuel</creator><creatorcontrib>Ballarin, Clemens ; Kauers, Manuel</creatorcontrib><description>Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate X bears no algebraic relation to other objects is violated.We propose to use a technique from model theory known as constraint programming to gain more flexibility, and we show how it can be applied to the Gaussian algorithm to be used for parametric systems. Our experiments suggest that in practice this leads to results comparable to the algorithm for parametric linear systems by Sit [9] --- at least if the parameters are sparse.</description><identifier>ISSN: 0163-5824</identifier><identifier>DOI: 10.1145/1041791.1041793</identifier><language>eng</language><ispartof>SIGSAM bulletin, 2004-06, Vol.38 (2), p.33-46</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1145_1041791_10417933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ballarin, Clemens</creatorcontrib><creatorcontrib>Kauers, Manuel</creatorcontrib><title>Solving parametric linear systems: an experiment with constraint algebraic programming</title><title>SIGSAM bulletin</title><description>Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate X bears no algebraic relation to other objects is violated.We propose to use a technique from model theory known as constraint programming to gain more flexibility, and we show how it can be applied to the Gaussian algorithm to be used for parametric systems. Our experiments suggest that in practice this leads to results comparable to the algorithm for parametric linear systems by Sit [9] --- at least if the parameters are sparse.</description><issn>0163-5824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqVzbEOgjAQgOEbNBHF2bU-ANCzRXA2Gnfdm4YUU9MCuSMmvL0x8gJO3_TnB9ihzBF1WaDUWJ0w_6kWkEg8qqysD3oFa-aXlFhjhQns7314--4pBks2upF8I4LvnCXBE48ucgrL1gZ229kNFNfL43zLGuqZybVmIB8tTQal-d7NfJ9V6v_iA8JZNyY</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Ballarin, Clemens</creator><creator>Kauers, Manuel</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200406</creationdate><title>Solving parametric linear systems</title><author>Ballarin, Clemens ; Kauers, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_1041791_10417933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ballarin, Clemens</creatorcontrib><creatorcontrib>Kauers, Manuel</creatorcontrib><collection>CrossRef</collection><jtitle>SIGSAM bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballarin, Clemens</au><au>Kauers, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving parametric linear systems: an experiment with constraint algebraic programming</atitle><jtitle>SIGSAM bulletin</jtitle><date>2004-06</date><risdate>2004</risdate><volume>38</volume><issue>2</issue><spage>33</spage><epage>46</epage><pages>33-46</pages><issn>0163-5824</issn><abstract>Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate X bears no algebraic relation to other objects is violated.We propose to use a technique from model theory known as constraint programming to gain more flexibility, and we show how it can be applied to the Gaussian algorithm to be used for parametric systems. Our experiments suggest that in practice this leads to results comparable to the algorithm for parametric linear systems by Sit [9] --- at least if the parameters are sparse.</abstract><doi>10.1145/1041791.1041793</doi></addata></record>
fulltext fulltext
identifier ISSN: 0163-5824
ispartof SIGSAM bulletin, 2004-06, Vol.38 (2), p.33-46
issn 0163-5824
language eng
recordid cdi_crossref_primary_10_1145_1041791_1041793
source ACM Digital Library Complete
title Solving parametric linear systems: an experiment with constraint algebraic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20parametric%20linear%20systems:%20an%20experiment%20with%20constraint%20algebraic%20programming&rft.jtitle=SIGSAM%20bulletin&rft.au=Ballarin,%20Clemens&rft.date=2004-06&rft.volume=38&rft.issue=2&rft.spage=33&rft.epage=46&rft.pages=33-46&rft.issn=0163-5824&rft_id=info:doi/10.1145/1041791.1041793&rft_dat=%3Ccrossref%3E10_1145_1041791_1041793%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true