Solving parametric linear systems: an experiment with constraint algebraic programming
Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate X bears no algebraic relation to other objects is violated.We propose to use...
Gespeichert in:
Veröffentlicht in: | SIGSAM bulletin 2004-06, Vol.38 (2), p.33-46 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 2 |
container_start_page | 33 |
container_title | SIGSAM bulletin |
container_volume | 38 |
creator | Ballarin, Clemens Kauers, Manuel |
description | Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate
X
bears no algebraic relation to other objects is violated.We propose to use a technique from model theory known as
constraint programming
to gain more flexibility, and we show how it can be applied to the Gaussian algorithm to be used for parametric systems. Our experiments suggest that in practice this leads to results comparable to the algorithm for parametric linear systems by Sit [9] --- at least if the parameters are sparse. |
doi_str_mv | 10.1145/1041791.1041793 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_1041791_1041793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_1041791_1041793</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_1041791_10417933</originalsourceid><addsrcrecordid>eNqVzbEOgjAQgOEbNBHF2bU-ANCzRXA2Gnfdm4YUU9MCuSMmvL0x8gJO3_TnB9ihzBF1WaDUWJ0w_6kWkEg8qqysD3oFa-aXlFhjhQns7314--4pBks2upF8I4LvnCXBE48ucgrL1gZ229kNFNfL43zLGuqZybVmIB8tTQal-d7NfJ9V6v_iA8JZNyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving parametric linear systems: an experiment with constraint algebraic programming</title><source>ACM Digital Library Complete</source><creator>Ballarin, Clemens ; Kauers, Manuel</creator><creatorcontrib>Ballarin, Clemens ; Kauers, Manuel</creatorcontrib><description>Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate
X
bears no algebraic relation to other objects is violated.We propose to use a technique from model theory known as
constraint programming
to gain more flexibility, and we show how it can be applied to the Gaussian algorithm to be used for parametric systems. Our experiments suggest that in practice this leads to results comparable to the algorithm for parametric linear systems by Sit [9] --- at least if the parameters are sparse.</description><identifier>ISSN: 0163-5824</identifier><identifier>DOI: 10.1145/1041791.1041793</identifier><language>eng</language><ispartof>SIGSAM bulletin, 2004-06, Vol.38 (2), p.33-46</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1145_1041791_10417933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ballarin, Clemens</creatorcontrib><creatorcontrib>Kauers, Manuel</creatorcontrib><title>Solving parametric linear systems: an experiment with constraint algebraic programming</title><title>SIGSAM bulletin</title><description>Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate
X
bears no algebraic relation to other objects is violated.We propose to use a technique from model theory known as
constraint programming
to gain more flexibility, and we show how it can be applied to the Gaussian algorithm to be used for parametric systems. Our experiments suggest that in practice this leads to results comparable to the algorithm for parametric linear systems by Sit [9] --- at least if the parameters are sparse.</description><issn>0163-5824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqVzbEOgjAQgOEbNBHF2bU-ANCzRXA2Gnfdm4YUU9MCuSMmvL0x8gJO3_TnB9ihzBF1WaDUWJ0w_6kWkEg8qqysD3oFa-aXlFhjhQns7314--4pBks2upF8I4LvnCXBE48ucgrL1gZ229kNFNfL43zLGuqZybVmIB8tTQal-d7NfJ9V6v_iA8JZNyY</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Ballarin, Clemens</creator><creator>Kauers, Manuel</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200406</creationdate><title>Solving parametric linear systems</title><author>Ballarin, Clemens ; Kauers, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_1041791_10417933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ballarin, Clemens</creatorcontrib><creatorcontrib>Kauers, Manuel</creatorcontrib><collection>CrossRef</collection><jtitle>SIGSAM bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballarin, Clemens</au><au>Kauers, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving parametric linear systems: an experiment with constraint algebraic programming</atitle><jtitle>SIGSAM bulletin</jtitle><date>2004-06</date><risdate>2004</risdate><volume>38</volume><issue>2</issue><spage>33</spage><epage>46</epage><pages>33-46</pages><issn>0163-5824</issn><abstract>Algorithms in computer algebra are usually designed for a fixed set of domains. For example, algorithms over the domain of polynomials are not applicable to parameters because the inherent assumption that the indeterminate
X
bears no algebraic relation to other objects is violated.We propose to use a technique from model theory known as
constraint programming
to gain more flexibility, and we show how it can be applied to the Gaussian algorithm to be used for parametric systems. Our experiments suggest that in practice this leads to results comparable to the algorithm for parametric linear systems by Sit [9] --- at least if the parameters are sparse.</abstract><doi>10.1145/1041791.1041793</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-5824 |
ispartof | SIGSAM bulletin, 2004-06, Vol.38 (2), p.33-46 |
issn | 0163-5824 |
language | eng |
recordid | cdi_crossref_primary_10_1145_1041791_1041793 |
source | ACM Digital Library Complete |
title | Solving parametric linear systems: an experiment with constraint algebraic programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20parametric%20linear%20systems:%20an%20experiment%20with%20constraint%20algebraic%20programming&rft.jtitle=SIGSAM%20bulletin&rft.au=Ballarin,%20Clemens&rft.date=2004-06&rft.volume=38&rft.issue=2&rft.spage=33&rft.epage=46&rft.pages=33-46&rft.issn=0163-5824&rft_id=info:doi/10.1145/1041791.1041793&rft_dat=%3Ccrossref%3E10_1145_1041791_1041793%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |