Lessons learned from the monitoring of turbidity currents and guidance for future platform designs

Turbidity currents transport globally significant volumes of sediment and organic carbon into the deep-sea and pose a hazard to critical infrastructure. Despite advances in technology, their powerful nature often damages expensive instruments placed in their path. These challenges mean that turbidit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological Society special publication 2020-01, Vol.500 (1), p.605-634
Hauptverfasser: Clare, Michael, Lintern, D. Gwyn, Rosenberger, Kurt, Hughes Clarke, John E., Paull, Charles, Gwiazda, Roberto, Cartigny, Matthieu J. B., Talling, Peter J., Perara, Daniel, Xu, Jingping, Parsons, Daniel, Jacinto, Ricardo Silva, Apprioual, Ronan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 1
container_start_page 605
container_title Geological Society special publication
container_volume 500
creator Clare, Michael
Lintern, D. Gwyn
Rosenberger, Kurt
Hughes Clarke, John E.
Paull, Charles
Gwiazda, Roberto
Cartigny, Matthieu J. B.
Talling, Peter J.
Perara, Daniel
Xu, Jingping
Parsons, Daniel
Jacinto, Ricardo Silva
Apprioual, Ronan
description Turbidity currents transport globally significant volumes of sediment and organic carbon into the deep-sea and pose a hazard to critical infrastructure. Despite advances in technology, their powerful nature often damages expensive instruments placed in their path. These challenges mean that turbidity currents have only been measured in a few locations worldwide, in relatively shallow water depths (
doi_str_mv 10.1144/SP500-2019-173
format Article
fullrecord <record><control><sourceid>gsl_hal_p</sourceid><recordid>TN_cdi_crossref_primary_10_1144_SP500_2019_173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GSLSpecPub2019-173</sourcerecordid><originalsourceid>FETCH-LOGICAL-a368t-d8a5f945317b9d475298e2a9ce79f6566b6994a1891a95a13b225dffc6a8761f3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURs1Loipdmb0hhoCvE7_GqgKKFAkkYLacxE4DSVzZCVL_PSlFiIXpvs53h4PQJZAbgCy7fXlmhCSUgEpApEdooYQEITklmZJwjGZTA0mmqDj5exOCn6IZSQlLpAB1jhYxvhNCKAMiGZ2hIrcx-j7i1prQ2wq74Ds8bCzufN8MPjR9jb3DwxiKpmqGHS7HEGw_RGz6CtdjU5m-tNj5gN04URZvWzNMY4crG5u6jxfozJk22sVPnaO3-7vX1TrJnx4eV8s8MSmXQ1JJw5zKWAqiUFUmGFXSUqNKK5TjjPOCK5UZkAqMYgbSglJWOVdyIwUHl87R9eHvxrR6G5rOhJ32ptHrZa73O5KlRPGUfsLE3hzYMvgYg3W_ASB6L1x_C9d74XoSPgWuDoE6trrw_iP-R34Bf-55yQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lessons learned from the monitoring of turbidity currents and guidance for future platform designs</title><source>Lyell Collection</source><creator>Clare, Michael ; Lintern, D. Gwyn ; Rosenberger, Kurt ; Hughes Clarke, John E. ; Paull, Charles ; Gwiazda, Roberto ; Cartigny, Matthieu J. B. ; Talling, Peter J. ; Perara, Daniel ; Xu, Jingping ; Parsons, Daniel ; Jacinto, Ricardo Silva ; Apprioual, Ronan</creator><creatorcontrib>Clare, Michael ; Lintern, D. Gwyn ; Rosenberger, Kurt ; Hughes Clarke, John E. ; Paull, Charles ; Gwiazda, Roberto ; Cartigny, Matthieu J. B. ; Talling, Peter J. ; Perara, Daniel ; Xu, Jingping ; Parsons, Daniel ; Jacinto, Ricardo Silva ; Apprioual, Ronan</creatorcontrib><description>Turbidity currents transport globally significant volumes of sediment and organic carbon into the deep-sea and pose a hazard to critical infrastructure. Despite advances in technology, their powerful nature often damages expensive instruments placed in their path. These challenges mean that turbidity currents have only been measured in a few locations worldwide, in relatively shallow water depths (&lt;&lt;2 km). Here, we share lessons from recent field deployments about how to design the platforms on which instruments are deployed. First, we show how monitoring platforms have been affected by turbidity currents including instability, displacement, tumbling and damage. Second, we relate these issues to specifics of the platform design, such as exposure of large surface area instruments within a flow and inadequate anchoring or seafloor support. Third, we provide recommended modifications to improve design by simplifying mooring configurations, minimizing surface area and enhancing seafloor stability. Finally, we highlight novel multi-point moorings that avoid interaction between the instruments and the flow, and flow-resilient seafloor platforms with innovative engineering design features, such as feet and ballast that can be ejected. Our experience will provide guidance for future deployments, so that more detailed insights can be provided into turbidity current behaviour, in a wider range of settings.</description><identifier>ISSN: 0305-8719</identifier><identifier>ISBN: 9781786204776</identifier><identifier>ISBN: 1786204770</identifier><identifier>EISSN: 2041-4927</identifier><identifier>EISBN: 9781786204981</identifier><identifier>EISBN: 1786204983</identifier><identifier>DOI: 10.1144/SP500-2019-173</identifier><language>eng</language><publisher>The Geological Society of London</publisher><subject>Sciences of the Universe</subject><ispartof>Geological Society special publication, 2020-01, Vol.500 (1), p.605-634</ispartof><rights>2020 The Author(s). Published by The Geological Society of London</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a368t-d8a5f945317b9d475298e2a9ce79f6566b6994a1891a95a13b225dffc6a8761f3</citedby><cites>FETCH-LOGICAL-a368t-d8a5f945317b9d475298e2a9ce79f6566b6994a1891a95a13b225dffc6a8761f3</cites><orcidid>0000-0002-3846-9926 ; 0000-0002-5185-5776 ; 0000-0003-1057-2670 ; 0000-0001-6446-5577 ; 0000-0002-1144-3865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.lyellcollection.org/doi/pdf/10.1144/SP500-2019-173$$EPDF$$P50$$Ggsl$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.lyellcollection.org/doi/full/10.1144/SP500-2019-173$$EHTML$$P50$$Ggsl$$Hfree_for_read</linktohtml><link.rule.ids>314,779,780,784,793,885,4027,27923,27924,75573,75577,75662</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04309632$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Clare, Michael</creatorcontrib><creatorcontrib>Lintern, D. Gwyn</creatorcontrib><creatorcontrib>Rosenberger, Kurt</creatorcontrib><creatorcontrib>Hughes Clarke, John E.</creatorcontrib><creatorcontrib>Paull, Charles</creatorcontrib><creatorcontrib>Gwiazda, Roberto</creatorcontrib><creatorcontrib>Cartigny, Matthieu J. B.</creatorcontrib><creatorcontrib>Talling, Peter J.</creatorcontrib><creatorcontrib>Perara, Daniel</creatorcontrib><creatorcontrib>Xu, Jingping</creatorcontrib><creatorcontrib>Parsons, Daniel</creatorcontrib><creatorcontrib>Jacinto, Ricardo Silva</creatorcontrib><creatorcontrib>Apprioual, Ronan</creatorcontrib><title>Lessons learned from the monitoring of turbidity currents and guidance for future platform designs</title><title>Geological Society special publication</title><description>Turbidity currents transport globally significant volumes of sediment and organic carbon into the deep-sea and pose a hazard to critical infrastructure. Despite advances in technology, their powerful nature often damages expensive instruments placed in their path. These challenges mean that turbidity currents have only been measured in a few locations worldwide, in relatively shallow water depths (&lt;&lt;2 km). Here, we share lessons from recent field deployments about how to design the platforms on which instruments are deployed. First, we show how monitoring platforms have been affected by turbidity currents including instability, displacement, tumbling and damage. Second, we relate these issues to specifics of the platform design, such as exposure of large surface area instruments within a flow and inadequate anchoring or seafloor support. Third, we provide recommended modifications to improve design by simplifying mooring configurations, minimizing surface area and enhancing seafloor stability. Finally, we highlight novel multi-point moorings that avoid interaction between the instruments and the flow, and flow-resilient seafloor platforms with innovative engineering design features, such as feet and ballast that can be ejected. Our experience will provide guidance for future deployments, so that more detailed insights can be provided into turbidity current behaviour, in a wider range of settings.</description><subject>Sciences of the Universe</subject><issn>0305-8719</issn><issn>2041-4927</issn><isbn>9781786204776</isbn><isbn>1786204770</isbn><isbn>9781786204981</isbn><isbn>1786204983</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURs1Loipdmb0hhoCvE7_GqgKKFAkkYLacxE4DSVzZCVL_PSlFiIXpvs53h4PQJZAbgCy7fXlmhCSUgEpApEdooYQEITklmZJwjGZTA0mmqDj5exOCn6IZSQlLpAB1jhYxvhNCKAMiGZ2hIrcx-j7i1prQ2wq74Ds8bCzufN8MPjR9jb3DwxiKpmqGHS7HEGw_RGz6CtdjU5m-tNj5gN04URZvWzNMY4crG5u6jxfozJk22sVPnaO3-7vX1TrJnx4eV8s8MSmXQ1JJw5zKWAqiUFUmGFXSUqNKK5TjjPOCK5UZkAqMYgbSglJWOVdyIwUHl87R9eHvxrR6G5rOhJ32ptHrZa73O5KlRPGUfsLE3hzYMvgYg3W_ASB6L1x_C9d74XoSPgWuDoE6trrw_iP-R34Bf-55yQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Clare, Michael</creator><creator>Lintern, D. Gwyn</creator><creator>Rosenberger, Kurt</creator><creator>Hughes Clarke, John E.</creator><creator>Paull, Charles</creator><creator>Gwiazda, Roberto</creator><creator>Cartigny, Matthieu J. B.</creator><creator>Talling, Peter J.</creator><creator>Perara, Daniel</creator><creator>Xu, Jingping</creator><creator>Parsons, Daniel</creator><creator>Jacinto, Ricardo Silva</creator><creator>Apprioual, Ronan</creator><general>The Geological Society of London</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3846-9926</orcidid><orcidid>https://orcid.org/0000-0002-5185-5776</orcidid><orcidid>https://orcid.org/0000-0003-1057-2670</orcidid><orcidid>https://orcid.org/0000-0001-6446-5577</orcidid><orcidid>https://orcid.org/0000-0002-1144-3865</orcidid></search><sort><creationdate>20200101</creationdate><title>Lessons learned from the monitoring of turbidity currents and guidance for future platform designs</title><author>Clare, Michael ; Lintern, D. Gwyn ; Rosenberger, Kurt ; Hughes Clarke, John E. ; Paull, Charles ; Gwiazda, Roberto ; Cartigny, Matthieu J. B. ; Talling, Peter J. ; Perara, Daniel ; Xu, Jingping ; Parsons, Daniel ; Jacinto, Ricardo Silva ; Apprioual, Ronan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a368t-d8a5f945317b9d475298e2a9ce79f6566b6994a1891a95a13b225dffc6a8761f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clare, Michael</creatorcontrib><creatorcontrib>Lintern, D. Gwyn</creatorcontrib><creatorcontrib>Rosenberger, Kurt</creatorcontrib><creatorcontrib>Hughes Clarke, John E.</creatorcontrib><creatorcontrib>Paull, Charles</creatorcontrib><creatorcontrib>Gwiazda, Roberto</creatorcontrib><creatorcontrib>Cartigny, Matthieu J. B.</creatorcontrib><creatorcontrib>Talling, Peter J.</creatorcontrib><creatorcontrib>Perara, Daniel</creatorcontrib><creatorcontrib>Xu, Jingping</creatorcontrib><creatorcontrib>Parsons, Daniel</creatorcontrib><creatorcontrib>Jacinto, Ricardo Silva</creatorcontrib><creatorcontrib>Apprioual, Ronan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Geological Society special publication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clare, Michael</au><au>Lintern, D. Gwyn</au><au>Rosenberger, Kurt</au><au>Hughes Clarke, John E.</au><au>Paull, Charles</au><au>Gwiazda, Roberto</au><au>Cartigny, Matthieu J. B.</au><au>Talling, Peter J.</au><au>Perara, Daniel</au><au>Xu, Jingping</au><au>Parsons, Daniel</au><au>Jacinto, Ricardo Silva</au><au>Apprioual, Ronan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lessons learned from the monitoring of turbidity currents and guidance for future platform designs</atitle><jtitle>Geological Society special publication</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>500</volume><issue>1</issue><spage>605</spage><epage>634</epage><pages>605-634</pages><issn>0305-8719</issn><eissn>2041-4927</eissn><isbn>9781786204776</isbn><isbn>1786204770</isbn><eisbn>9781786204981</eisbn><eisbn>1786204983</eisbn><abstract>Turbidity currents transport globally significant volumes of sediment and organic carbon into the deep-sea and pose a hazard to critical infrastructure. Despite advances in technology, their powerful nature often damages expensive instruments placed in their path. These challenges mean that turbidity currents have only been measured in a few locations worldwide, in relatively shallow water depths (&lt;&lt;2 km). Here, we share lessons from recent field deployments about how to design the platforms on which instruments are deployed. First, we show how monitoring platforms have been affected by turbidity currents including instability, displacement, tumbling and damage. Second, we relate these issues to specifics of the platform design, such as exposure of large surface area instruments within a flow and inadequate anchoring or seafloor support. Third, we provide recommended modifications to improve design by simplifying mooring configurations, minimizing surface area and enhancing seafloor stability. Finally, we highlight novel multi-point moorings that avoid interaction between the instruments and the flow, and flow-resilient seafloor platforms with innovative engineering design features, such as feet and ballast that can be ejected. Our experience will provide guidance for future deployments, so that more detailed insights can be provided into turbidity current behaviour, in a wider range of settings.</abstract><pub>The Geological Society of London</pub><doi>10.1144/SP500-2019-173</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-3846-9926</orcidid><orcidid>https://orcid.org/0000-0002-5185-5776</orcidid><orcidid>https://orcid.org/0000-0003-1057-2670</orcidid><orcidid>https://orcid.org/0000-0001-6446-5577</orcidid><orcidid>https://orcid.org/0000-0002-1144-3865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-8719
ispartof Geological Society special publication, 2020-01, Vol.500 (1), p.605-634
issn 0305-8719
2041-4927
language eng
recordid cdi_crossref_primary_10_1144_SP500_2019_173
source Lyell Collection
subjects Sciences of the Universe
title Lessons learned from the monitoring of turbidity currents and guidance for future platform designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gsl_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lessons%20learned%20from%20the%20monitoring%20of%20turbidity%20currents%20and%20guidance%20for%20future%20platform%20designs&rft.jtitle=Geological%20Society%20special%20publication&rft.au=Clare,%20Michael&rft.date=2020-01-01&rft.volume=500&rft.issue=1&rft.spage=605&rft.epage=634&rft.pages=605-634&rft.issn=0305-8719&rft.eissn=2041-4927&rft.isbn=9781786204776&rft.isbn_list=1786204770&rft_id=info:doi/10.1144/SP500-2019-173&rft_dat=%3Cgsl_hal_p%3EGSLSpecPub2019-173%3C/gsl_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781786204981&rft.eisbn_list=1786204983&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true