SPLASH: semi-empirical prediction of landslide-generated displacement wave run-up heights
Displacement waves (or tsunamis) generated by sub-aerial landslides cause damage along shorelines over long distances, making run-up assessment a crucial component of landslide risk analysis. Although site-specific modelling provides important insight into the behaviour of potential waves, more gene...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 366 |
---|---|
container_issue | 1 |
container_start_page | 353 |
container_title | |
container_volume | 477 |
creator | Oppikofer, Thierry Hermanns, Reginald L. Roberts, Nicholas J. Böhme, Martina |
description | Displacement waves (or tsunamis) generated by sub-aerial landslides cause damage along shorelines over long distances, making run-up assessment a crucial component of landslide risk analysis. Although site-specific modelling provides important insight into the behaviour of potential waves, more general approaches using limited input parameters are necessary for preliminary assessments. We use a catalogue of landslide-generated displacement waves to develop semi-empirical relationships linking displacement wave run-up (R in metres) to distance from landslide impact (x in kilometres) and to landslide volume (V in millions of cubic metres). For individual events, run-up decreases with distance according to power laws. Consideration of ten events demonstrates that run-up increases with landslide volume, also according to a power law. Combining these relationships gives the SPLASH equation: R = aVb xc, with best-fitted parameters a = 18.093, b = 0.57110 and c = −0.74189. The 95% prediction interval between the calculated and measured run-up values is 2.58, meaning that 5% of the measured run-up heights exceed the predicted value by a factor of 2.58 or more. This relatively large error is explained by local amplifications of wave height and run-up. Comparisons with other displacement wave models show that the SPLASH equation is a valuable tool for the first-stage preliminary hazard and risk assessment for unstable rock slopes above water bodies. |
doi_str_mv | 10.1144/SP477.1 |
format | Book Chapter |
fullrecord | <record><control><sourceid>gsl_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1144_SP477_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SP477-17-222</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-3413f96a67b17c9f86189ce8ec9e13304c4d29d6cb552769c6d481a44d48f5133</originalsourceid><addsrcrecordid>eNpl0M9PwjAcBfD6KxGR-C_0ppdi23Xt6o0QFRMSSVATT0tpv4PK2JZ2YPzvnWK4eHqH98k7PISuGB0yJsTtfCaUGrIjdMFUJjlNNGXHqMepYERork4ORcbpKerRhKYkU0yfo0GMH5RSzlUqqe6h9_lsOppP7nCEjSewaXzw1pS4CeC8bX1d4brApalcLL0DsoQKgmnBYedjUxoLG6ha_Gl2gMO2ItsGr8AvV228RGeFKSMM_rKPXh_uX8YTMn1-fBqPpsQkSrYkESwptDRSLZiyusgky7SFDKwGliRUWOG4dtIu0pQrqa10ImNGiC6KtBN9dL3ftaGOMUCRN8FvTPjKGc1_7sp_78pZJ2_2cl3VOygPzq5M00LI1y1lPH2TM95RvKfLWOaLul7Hf2vfVzdwDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>SPLASH: semi-empirical prediction of landslide-generated displacement wave run-up heights</title><source>Lyell Collection</source><creator>Oppikofer, Thierry ; Hermanns, Reginald L. ; Roberts, Nicholas J. ; Böhme, Martina</creator><creatorcontrib>Oppikofer, Thierry ; Hermanns, Reginald L. ; Roberts, Nicholas J. ; Böhme, Martina</creatorcontrib><description>Displacement waves (or tsunamis) generated by sub-aerial landslides cause damage along shorelines over long distances, making run-up assessment a crucial component of landslide risk analysis. Although site-specific modelling provides important insight into the behaviour of potential waves, more general approaches using limited input parameters are necessary for preliminary assessments. We use a catalogue of landslide-generated displacement waves to develop semi-empirical relationships linking displacement wave run-up (R in metres) to distance from landslide impact (x in kilometres) and to landslide volume (V in millions of cubic metres). For individual events, run-up decreases with distance according to power laws. Consideration of ten events demonstrates that run-up increases with landslide volume, also according to a power law. Combining these relationships gives the SPLASH equation: R = aVb xc, with best-fitted parameters a = 18.093, b = 0.57110 and c = −0.74189. The 95% prediction interval between the calculated and measured run-up values is 2.58, meaning that 5% of the measured run-up heights exceed the predicted value by a factor of 2.58 or more. This relatively large error is explained by local amplifications of wave height and run-up. Comparisons with other displacement wave models show that the SPLASH equation is a valuable tool for the first-stage preliminary hazard and risk assessment for unstable rock slopes above water bodies.</description><identifier>ISSN: 0305-8719</identifier><identifier>ISBN: 1786203820</identifier><identifier>ISBN: 9781786203823</identifier><identifier>EISSN: 2041-4927</identifier><identifier>EISBN: 1786203901</identifier><identifier>EISBN: 9781786203908</identifier><identifier>EISBN: 9781523128723</identifier><identifier>EISBN: 1523128720</identifier><identifier>DOI: 10.1144/SP477.1</identifier><language>eng</language><publisher>The Geological Society of London</publisher><subject>Earth Sciences ; Exploration & Geophysics ; Geophysics, Geodesy & Seismology ; Mining Engineering & Extractive Metallurgy</subject><ispartof>Geological Society special publication, 2019, Vol.477 (1), p.353-366</ispartof><rights>2018 The Author(s). Published by The Geological Society of London. All rights reserved</rights><rights>2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-3413f96a67b17c9f86189ce8ec9e13304c4d29d6cb552769c6d481a44d48f5133</citedby><cites>FETCH-LOGICAL-a376t-3413f96a67b17c9f86189ce8ec9e13304c4d29d6cb552769c6d481a44d48f5133</cites><orcidid>0000-0001-6675-3580 ; 0000-0001-5577-5004 ; 0000-0002-2274-5770</orcidid><relation>Geological Society, London, Special Publications</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://content.knovel.com/content/Thumbs/thumb12362.gif</thumbnail><linktopdf>$$Uhttps://www.lyellcollection.org/doi/pdf/10.1144/SP477.1$$EPDF$$P50$$Ggsl$$H</linktopdf><linktohtml>$$Uhttps://www.lyellcollection.org/doi/full/10.1144/SP477.1$$EHTML$$P50$$Ggsl$$H</linktohtml><link.rule.ids>314,779,780,784,793,4028,24781,27924,27925,75702,75706,75791</link.rule.ids></links><search><creatorcontrib>Oppikofer, Thierry</creatorcontrib><creatorcontrib>Hermanns, Reginald L.</creatorcontrib><creatorcontrib>Roberts, Nicholas J.</creatorcontrib><creatorcontrib>Böhme, Martina</creatorcontrib><title>SPLASH: semi-empirical prediction of landslide-generated displacement wave run-up heights</title><title>Geological Society special publication</title><description>Displacement waves (or tsunamis) generated by sub-aerial landslides cause damage along shorelines over long distances, making run-up assessment a crucial component of landslide risk analysis. Although site-specific modelling provides important insight into the behaviour of potential waves, more general approaches using limited input parameters are necessary for preliminary assessments. We use a catalogue of landslide-generated displacement waves to develop semi-empirical relationships linking displacement wave run-up (R in metres) to distance from landslide impact (x in kilometres) and to landslide volume (V in millions of cubic metres). For individual events, run-up decreases with distance according to power laws. Consideration of ten events demonstrates that run-up increases with landslide volume, also according to a power law. Combining these relationships gives the SPLASH equation: R = aVb xc, with best-fitted parameters a = 18.093, b = 0.57110 and c = −0.74189. The 95% prediction interval between the calculated and measured run-up values is 2.58, meaning that 5% of the measured run-up heights exceed the predicted value by a factor of 2.58 or more. This relatively large error is explained by local amplifications of wave height and run-up. Comparisons with other displacement wave models show that the SPLASH equation is a valuable tool for the first-stage preliminary hazard and risk assessment for unstable rock slopes above water bodies.</description><subject>Earth Sciences</subject><subject>Exploration & Geophysics</subject><subject>Geophysics, Geodesy & Seismology</subject><subject>Mining Engineering & Extractive Metallurgy</subject><issn>0305-8719</issn><issn>2041-4927</issn><isbn>1786203820</isbn><isbn>9781786203823</isbn><isbn>1786203901</isbn><isbn>9781786203908</isbn><isbn>9781523128723</isbn><isbn>1523128720</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2019</creationdate><recordtype>book_chapter</recordtype><recordid>eNpl0M9PwjAcBfD6KxGR-C_0ppdi23Xt6o0QFRMSSVATT0tpv4PK2JZ2YPzvnWK4eHqH98k7PISuGB0yJsTtfCaUGrIjdMFUJjlNNGXHqMepYERork4ORcbpKerRhKYkU0yfo0GMH5RSzlUqqe6h9_lsOppP7nCEjSewaXzw1pS4CeC8bX1d4brApalcLL0DsoQKgmnBYedjUxoLG6ha_Gl2gMO2ItsGr8AvV228RGeFKSMM_rKPXh_uX8YTMn1-fBqPpsQkSrYkESwptDRSLZiyusgky7SFDKwGliRUWOG4dtIu0pQrqa10ImNGiC6KtBN9dL3ftaGOMUCRN8FvTPjKGc1_7sp_78pZJ2_2cl3VOygPzq5M00LI1y1lPH2TM95RvKfLWOaLul7Hf2vfVzdwDQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Oppikofer, Thierry</creator><creator>Hermanns, Reginald L.</creator><creator>Roberts, Nicholas J.</creator><creator>Böhme, Martina</creator><general>The Geological Society of London</general><general>Geological Society of London (GSL)</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6675-3580</orcidid><orcidid>https://orcid.org/0000-0001-5577-5004</orcidid><orcidid>https://orcid.org/0000-0002-2274-5770</orcidid></search><sort><creationdate>20190101</creationdate><title>SPLASH: semi-empirical prediction of landslide-generated displacement wave run-up heights</title><author>Oppikofer, Thierry ; Hermanns, Reginald L. ; Roberts, Nicholas J. ; Böhme, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-3413f96a67b17c9f86189ce8ec9e13304c4d29d6cb552769c6d481a44d48f5133</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Earth Sciences</topic><topic>Exploration & Geophysics</topic><topic>Geophysics, Geodesy & Seismology</topic><topic>Mining Engineering & Extractive Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oppikofer, Thierry</creatorcontrib><creatorcontrib>Hermanns, Reginald L.</creatorcontrib><creatorcontrib>Roberts, Nicholas J.</creatorcontrib><creatorcontrib>Böhme, Martina</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oppikofer, Thierry</au><au>Hermanns, Reginald L.</au><au>Roberts, Nicholas J.</au><au>Böhme, Martina</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>SPLASH: semi-empirical prediction of landslide-generated displacement wave run-up heights</atitle><btitle>Geological Society special publication</btitle><seriestitle>Geological Society, London, Special Publications</seriestitle><date>2019-01-01</date><risdate>2019</risdate><volume>477</volume><issue>1</issue><spage>353</spage><epage>366</epage><pages>353-366</pages><issn>0305-8719</issn><eissn>2041-4927</eissn><isbn>1786203820</isbn><isbn>9781786203823</isbn><eisbn>1786203901</eisbn><eisbn>9781786203908</eisbn><eisbn>9781523128723</eisbn><eisbn>1523128720</eisbn><abstract>Displacement waves (or tsunamis) generated by sub-aerial landslides cause damage along shorelines over long distances, making run-up assessment a crucial component of landslide risk analysis. Although site-specific modelling provides important insight into the behaviour of potential waves, more general approaches using limited input parameters are necessary for preliminary assessments. We use a catalogue of landslide-generated displacement waves to develop semi-empirical relationships linking displacement wave run-up (R in metres) to distance from landslide impact (x in kilometres) and to landslide volume (V in millions of cubic metres). For individual events, run-up decreases with distance according to power laws. Consideration of ten events demonstrates that run-up increases with landslide volume, also according to a power law. Combining these relationships gives the SPLASH equation: R = aVb xc, with best-fitted parameters a = 18.093, b = 0.57110 and c = −0.74189. The 95% prediction interval between the calculated and measured run-up values is 2.58, meaning that 5% of the measured run-up heights exceed the predicted value by a factor of 2.58 or more. This relatively large error is explained by local amplifications of wave height and run-up. Comparisons with other displacement wave models show that the SPLASH equation is a valuable tool for the first-stage preliminary hazard and risk assessment for unstable rock slopes above water bodies.</abstract><pub>The Geological Society of London</pub><doi>10.1144/SP477.1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6675-3580</orcidid><orcidid>https://orcid.org/0000-0001-5577-5004</orcidid><orcidid>https://orcid.org/0000-0002-2274-5770</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-8719 |
ispartof | Geological Society special publication, 2019, Vol.477 (1), p.353-366 |
issn | 0305-8719 2041-4927 |
language | eng |
recordid | cdi_crossref_primary_10_1144_SP477_1 |
source | Lyell Collection |
subjects | Earth Sciences Exploration & Geophysics Geophysics, Geodesy & Seismology Mining Engineering & Extractive Metallurgy |
title | SPLASH: semi-empirical prediction of landslide-generated displacement wave run-up heights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gsl_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=SPLASH:%20semi-empirical%20prediction%20of%20landslide-generated%20displacement%20wave%20run-up%20heights&rft.btitle=Geological%20Society%20special%20publication&rft.au=Oppikofer,%20Thierry&rft.date=2019-01-01&rft.volume=477&rft.issue=1&rft.spage=353&rft.epage=366&rft.pages=353-366&rft.issn=0305-8719&rft.eissn=2041-4927&rft.isbn=1786203820&rft.isbn_list=9781786203823&rft_id=info:doi/10.1144/SP477.1&rft_dat=%3Cgsl_cross%3ESP477-17-222%3C/gsl_cross%3E%3Curl%3E%3C/url%3E&rft.eisbn=1786203901&rft.eisbn_list=9781786203908&rft.eisbn_list=9781523128723&rft.eisbn_list=1523128720&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |