Quantization of Hall Conductance and Stabilization of Flux State in Noncommutative Space
We studied the quantization of Hall conductance and generalized Peierls instability in two-dimensional noncommutative space under a constant magnetic field. We show that the Hall conductance is quantized and the quantization is stable against a change of the noncommutative parameter θ. For a rationa...
Gespeichert in:
Veröffentlicht in: | Progress of theoretical and experimental physics 2011-11, Vol.126 (5), p.915-922 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied the quantization of Hall conductance and generalized Peierls instability in two-dimensional noncommutative space under a constant magnetic field. We show that the Hall conductance is quantized and the quantization is stable against a change of the noncommutative parameter θ. For a rational magnetic flux φ = p/q and a rational θ = r/s, the flux state is stabilized at a filling ν = p(4qs − pr)/4q
2
s. The condition is different from that of commutative space. If we regard θ as a dynamical parameter, we propose a mechanism for how the model determine the value of θ. |
---|---|
ISSN: | 0033-068X 2050-3911 1347-4081 |
DOI: | 10.1143/PTP.126.915 |