Magnetoresistance of Bilayer Graphene in Parallel Magnetic Fields

We have measured the magnetoresistance of bilayer graphene in parallel magnetic fields to compare it with the results of monolayer graphene reported previously. It was revealed that the magnetoresistance consists of three components. The positive magnetoresistance due to charge inhomogeneity (electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Physical Society of Japan 2012-01, Vol.81 (1), p.013702-013702-4
Hauptverfasser: Wakabayashi, Junichi, Sano, Kazuya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 013702-4
container_issue 1
container_start_page 013702
container_title Journal of the Physical Society of Japan
container_volume 81
creator Wakabayashi, Junichi
Sano, Kazuya
description We have measured the magnetoresistance of bilayer graphene in parallel magnetic fields to compare it with the results of monolayer graphene reported previously. It was revealed that the magnetoresistance consists of three components. The positive magnetoresistance due to charge inhomogeneity (electron--hole puddles) contributes significantly around the charge neutrality point (CNP) and was found to disappear at a high carrier density away from the CNP. The negative magnetoresistance observed at all carrier densities is considered to be due to the weak localization and the perpendicular component [$\delta B_{\bot}(\mbi{r})$] arising from ripples and the parallel magnetic field. The positive magnetoresistance due to the random distribution of $\delta B_{\bot}(\mbi{r})$ shows weak magnetic field dependence in contrast to the parabolic dependence observed in monolayer graphene.
doi_str_mv 10.1143/JPSJ.81.013702
format Article
fullrecord <record><control><sourceid>ipap_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1143_JPSJ_81_013702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1143_JPSJ_81_013702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-6d76e0a4499092b8ccb5ff6ebbbfd15f077866660f4979bd5d34ca01f6f1be8a3</originalsourceid><addsrcrecordid>eNqFkDFPwzAUhC0EEqGwMntGSngvduJkLBUtVEVUAubIdp7BKCSRnaX_nlZh55Zb7rvhY-wWIUOU4n67f9tmFWaAQkF-xhIUUqUSlDhnCYDAtAYsLtlVjN8AeYG5TNjyRX_2NA2Boo-T7i3xwfEH3-kDBb4Jevyinrjv-V4H3XXU8Znwlq89dW28ZhdOd5Fu_nrBPtaP76undPe6eV4td6kVpZrSslUlgZayrqHOTWWtKZwryRjjWiwcKFWVx4CTtapNW7RCWg3oSoeGKi0WLJt_bRhiDOSaMfgfHQ4NQnMS0JwENBU2s4AjcDcDftTjf-NfWt5bcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetoresistance of Bilayer Graphene in Parallel Magnetic Fields</title><source>Alma/SFX Local Collection</source><creator>Wakabayashi, Junichi ; Sano, Kazuya</creator><creatorcontrib>Wakabayashi, Junichi ; Sano, Kazuya</creatorcontrib><description>We have measured the magnetoresistance of bilayer graphene in parallel magnetic fields to compare it with the results of monolayer graphene reported previously. It was revealed that the magnetoresistance consists of three components. The positive magnetoresistance due to charge inhomogeneity (electron--hole puddles) contributes significantly around the charge neutrality point (CNP) and was found to disappear at a high carrier density away from the CNP. The negative magnetoresistance observed at all carrier densities is considered to be due to the weak localization and the perpendicular component [$\delta B_{\bot}(\mbi{r})$] arising from ripples and the parallel magnetic field. The positive magnetoresistance due to the random distribution of $\delta B_{\bot}(\mbi{r})$ shows weak magnetic field dependence in contrast to the parabolic dependence observed in monolayer graphene.</description><identifier>ISSN: 0031-9015</identifier><identifier>EISSN: 1347-4073</identifier><identifier>DOI: 10.1143/JPSJ.81.013702</identifier><language>eng</language><publisher>The Physical Society of Japan</publisher><ispartof>Journal of the Physical Society of Japan, 2012-01, Vol.81 (1), p.013702-013702-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-6d76e0a4499092b8ccb5ff6ebbbfd15f077866660f4979bd5d34ca01f6f1be8a3</citedby><cites>FETCH-LOGICAL-c367t-6d76e0a4499092b8ccb5ff6ebbbfd15f077866660f4979bd5d34ca01f6f1be8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wakabayashi, Junichi</creatorcontrib><creatorcontrib>Sano, Kazuya</creatorcontrib><title>Magnetoresistance of Bilayer Graphene in Parallel Magnetic Fields</title><title>Journal of the Physical Society of Japan</title><description>We have measured the magnetoresistance of bilayer graphene in parallel magnetic fields to compare it with the results of monolayer graphene reported previously. It was revealed that the magnetoresistance consists of three components. The positive magnetoresistance due to charge inhomogeneity (electron--hole puddles) contributes significantly around the charge neutrality point (CNP) and was found to disappear at a high carrier density away from the CNP. The negative magnetoresistance observed at all carrier densities is considered to be due to the weak localization and the perpendicular component [$\delta B_{\bot}(\mbi{r})$] arising from ripples and the parallel magnetic field. The positive magnetoresistance due to the random distribution of $\delta B_{\bot}(\mbi{r})$ shows weak magnetic field dependence in contrast to the parabolic dependence observed in monolayer graphene.</description><issn>0031-9015</issn><issn>1347-4073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAUhC0EEqGwMntGSngvduJkLBUtVEVUAubIdp7BKCSRnaX_nlZh55Zb7rvhY-wWIUOU4n67f9tmFWaAQkF-xhIUUqUSlDhnCYDAtAYsLtlVjN8AeYG5TNjyRX_2NA2Boo-T7i3xwfEH3-kDBb4Jevyinrjv-V4H3XXU8Znwlq89dW28ZhdOd5Fu_nrBPtaP76undPe6eV4td6kVpZrSslUlgZayrqHOTWWtKZwryRjjWiwcKFWVx4CTtapNW7RCWg3oSoeGKi0WLJt_bRhiDOSaMfgfHQ4NQnMS0JwENBU2s4AjcDcDftTjf-NfWt5bcA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Wakabayashi, Junichi</creator><creator>Sano, Kazuya</creator><general>The Physical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120101</creationdate><title>Magnetoresistance of Bilayer Graphene in Parallel Magnetic Fields</title><author>Wakabayashi, Junichi ; Sano, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-6d76e0a4499092b8ccb5ff6ebbbfd15f077866660f4979bd5d34ca01f6f1be8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakabayashi, Junichi</creatorcontrib><creatorcontrib>Sano, Kazuya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Physical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakabayashi, Junichi</au><au>Sano, Kazuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetoresistance of Bilayer Graphene in Parallel Magnetic Fields</atitle><jtitle>Journal of the Physical Society of Japan</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>81</volume><issue>1</issue><spage>013702</spage><epage>013702-4</epage><pages>013702-013702-4</pages><issn>0031-9015</issn><eissn>1347-4073</eissn><abstract>We have measured the magnetoresistance of bilayer graphene in parallel magnetic fields to compare it with the results of monolayer graphene reported previously. It was revealed that the magnetoresistance consists of three components. The positive magnetoresistance due to charge inhomogeneity (electron--hole puddles) contributes significantly around the charge neutrality point (CNP) and was found to disappear at a high carrier density away from the CNP. The negative magnetoresistance observed at all carrier densities is considered to be due to the weak localization and the perpendicular component [$\delta B_{\bot}(\mbi{r})$] arising from ripples and the parallel magnetic field. The positive magnetoresistance due to the random distribution of $\delta B_{\bot}(\mbi{r})$ shows weak magnetic field dependence in contrast to the parabolic dependence observed in monolayer graphene.</abstract><pub>The Physical Society of Japan</pub><doi>10.1143/JPSJ.81.013702</doi></addata></record>
fulltext fulltext
identifier ISSN: 0031-9015
ispartof Journal of the Physical Society of Japan, 2012-01, Vol.81 (1), p.013702-013702-4
issn 0031-9015
1347-4073
language eng
recordid cdi_crossref_primary_10_1143_JPSJ_81_013702
source Alma/SFX Local Collection
title Magnetoresistance of Bilayer Graphene in Parallel Magnetic Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ipap_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetoresistance%20of%20Bilayer%20Graphene%20in%20Parallel%20Magnetic%20Fields&rft.jtitle=Journal%20of%20the%20Physical%20Society%20of%20Japan&rft.au=Wakabayashi,%20Junichi&rft.date=2012-01-01&rft.volume=81&rft.issue=1&rft.spage=013702&rft.epage=013702-4&rft.pages=013702-013702-4&rft.issn=0031-9015&rft.eissn=1347-4073&rft_id=info:doi/10.1143/JPSJ.81.013702&rft_dat=%3Cipap_cross%3E10_1143_JPSJ_81_013702%3C/ipap_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true