Multiple Light Scattering Model Applied to Reflective Display Materials

An estimate for the minimum film thickness required to give the scattering state of a reflective display material, such as a polymer dispersed liquid crystal (PDLC) or polymer stabilized cholesteric texture (PSCT), a desired diffuse luminous reflectance is presented. It is concluded that single scat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 1998-12, Vol.37 (12R), p.6662
Hauptverfasser: Barchini, R., Hart, J. G. Gordon II
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12R
container_start_page 6662
container_title Japanese Journal of Applied Physics
container_volume 37
creator Barchini, R.
Hart, J. G. Gordon II
description An estimate for the minimum film thickness required to give the scattering state of a reflective display material, such as a polymer dispersed liquid crystal (PDLC) or polymer stabilized cholesteric texture (PSCT), a desired diffuse luminous reflectance is presented. It is concluded that single scattering models are not suited for this task. To account for the multiple scattering of light, a previously developed model based on Mie scattering and two-flux radiative transfer theory is implemented. This simple model relates the size, composition, and the volume fraction of the scattering entities to the diffuse reflectance of the material. It is shown that the diffuse reflectance predictions from this model are in good agreement with measurements from other turbid systems. Using assumptions intended to produce an underestimate, it is concluded that the most birefringent liquid crystal materials currently available would require a film thickness between 11.5 µm and 17 µm to give an ideal black substrate a diffuse luminous reflectance of 60%.
doi_str_mv 10.1143/JJAP.37.6662
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1143_JJAP_37_6662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1143_JJAP_37_6662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-ca9f19a93be39db53e4066a64667e07eda916cb29140fa059a59c13a28f66d2f3</originalsourceid><addsrcrecordid>eNotkMtKxDAYhYMoWEd3PkAewNbcmk6WZdTRoUXxsg5p-meMRFuaKMzb26KrjwOHw-FD6JKSglLBr3e7-qngVSGlZEcoo1xUuSCyPEYZIYzmQjF2is5i_JijLAXN0Lb9DsmPAXDj9-8Jv1iTEkz-a4_boYeA63EMHnqcBvwMLoBN_gfwjY9jMAfcmqVsQjxHJ24GXPxzhd7ubl8393nzuH3Y1E1u-Zqk3BrlqDKKd8BV35Uc5n_SSCFlBaSC3igqbccUFcQZUipTKku5YWsnZc8cX6Grv107DTFO4PQ4-U8zHTQlepGgFwmaV3qRwH8BTYFPaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple Light Scattering Model Applied to Reflective Display Materials</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Barchini, R. ; Hart, J. G. Gordon II</creator><creatorcontrib>Barchini, R. ; Hart, J. G. Gordon II</creatorcontrib><description>An estimate for the minimum film thickness required to give the scattering state of a reflective display material, such as a polymer dispersed liquid crystal (PDLC) or polymer stabilized cholesteric texture (PSCT), a desired diffuse luminous reflectance is presented. It is concluded that single scattering models are not suited for this task. To account for the multiple scattering of light, a previously developed model based on Mie scattering and two-flux radiative transfer theory is implemented. This simple model relates the size, composition, and the volume fraction of the scattering entities to the diffuse reflectance of the material. It is shown that the diffuse reflectance predictions from this model are in good agreement with measurements from other turbid systems. Using assumptions intended to produce an underestimate, it is concluded that the most birefringent liquid crystal materials currently available would require a film thickness between 11.5 µm and 17 µm to give an ideal black substrate a diffuse luminous reflectance of 60%.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.1143/JJAP.37.6662</identifier><language>eng</language><ispartof>Japanese Journal of Applied Physics, 1998-12, Vol.37 (12R), p.6662</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-ca9f19a93be39db53e4066a64667e07eda916cb29140fa059a59c13a28f66d2f3</citedby><cites>FETCH-LOGICAL-c380t-ca9f19a93be39db53e4066a64667e07eda916cb29140fa059a59c13a28f66d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barchini, R.</creatorcontrib><creatorcontrib>Hart, J. G. Gordon II</creatorcontrib><title>Multiple Light Scattering Model Applied to Reflective Display Materials</title><title>Japanese Journal of Applied Physics</title><description>An estimate for the minimum film thickness required to give the scattering state of a reflective display material, such as a polymer dispersed liquid crystal (PDLC) or polymer stabilized cholesteric texture (PSCT), a desired diffuse luminous reflectance is presented. It is concluded that single scattering models are not suited for this task. To account for the multiple scattering of light, a previously developed model based on Mie scattering and two-flux radiative transfer theory is implemented. This simple model relates the size, composition, and the volume fraction of the scattering entities to the diffuse reflectance of the material. It is shown that the diffuse reflectance predictions from this model are in good agreement with measurements from other turbid systems. Using assumptions intended to produce an underestimate, it is concluded that the most birefringent liquid crystal materials currently available would require a film thickness between 11.5 µm and 17 µm to give an ideal black substrate a diffuse luminous reflectance of 60%.</description><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNotkMtKxDAYhYMoWEd3PkAewNbcmk6WZdTRoUXxsg5p-meMRFuaKMzb26KrjwOHw-FD6JKSglLBr3e7-qngVSGlZEcoo1xUuSCyPEYZIYzmQjF2is5i_JijLAXN0Lb9DsmPAXDj9-8Jv1iTEkz-a4_boYeA63EMHnqcBvwMLoBN_gfwjY9jMAfcmqVsQjxHJ24GXPxzhd7ubl8393nzuH3Y1E1u-Zqk3BrlqDKKd8BV35Uc5n_SSCFlBaSC3igqbccUFcQZUipTKku5YWsnZc8cX6Grv107DTFO4PQ4-U8zHTQlepGgFwmaV3qRwH8BTYFPaQ</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Barchini, R.</creator><creator>Hart, J. G. Gordon II</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19981201</creationdate><title>Multiple Light Scattering Model Applied to Reflective Display Materials</title><author>Barchini, R. ; Hart, J. G. Gordon II</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-ca9f19a93be39db53e4066a64667e07eda916cb29140fa059a59c13a28f66d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barchini, R.</creatorcontrib><creatorcontrib>Hart, J. G. Gordon II</creatorcontrib><collection>CrossRef</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barchini, R.</au><au>Hart, J. G. Gordon II</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Light Scattering Model Applied to Reflective Display Materials</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>37</volume><issue>12R</issue><spage>6662</spage><pages>6662-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><abstract>An estimate for the minimum film thickness required to give the scattering state of a reflective display material, such as a polymer dispersed liquid crystal (PDLC) or polymer stabilized cholesteric texture (PSCT), a desired diffuse luminous reflectance is presented. It is concluded that single scattering models are not suited for this task. To account for the multiple scattering of light, a previously developed model based on Mie scattering and two-flux radiative transfer theory is implemented. This simple model relates the size, composition, and the volume fraction of the scattering entities to the diffuse reflectance of the material. It is shown that the diffuse reflectance predictions from this model are in good agreement with measurements from other turbid systems. Using assumptions intended to produce an underestimate, it is concluded that the most birefringent liquid crystal materials currently available would require a film thickness between 11.5 µm and 17 µm to give an ideal black substrate a diffuse luminous reflectance of 60%.</abstract><doi>10.1143/JJAP.37.6662</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 1998-12, Vol.37 (12R), p.6662
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_1143_JJAP_37_6662
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Multiple Light Scattering Model Applied to Reflective Display Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Light%20Scattering%20Model%20Applied%20to%20Reflective%20Display%20Materials&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Barchini,%20R.&rft.date=1998-12-01&rft.volume=37&rft.issue=12R&rft.spage=6662&rft.pages=6662-&rft.issn=0021-4922&rft.eissn=1347-4065&rft_id=info:doi/10.1143/JJAP.37.6662&rft_dat=%3Ccrossref%3E10_1143_JJAP_37_6662%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true