Monte Carlo simulation of discharge plasmas using fine subslabs

A self-consistent Monte Carlo modelling technique has been developed to study discharge plasmas. The fine subslab technique and weight probability method are introduced. These two methods are applied to a DC Ar-like gas discharge simulation. The disharge profiles obtained are in good agreement with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 1997-07, Vol.36 (7B), p.4815-4819
Hauptverfasser: GOTO, M, KONDOH, Y, MATSUOKA, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4819
container_issue 7B
container_start_page 4815
container_title Japanese Journal of Applied Physics
container_volume 36
creator GOTO, M
KONDOH, Y
MATSUOKA, A
description A self-consistent Monte Carlo modelling technique has been developed to study discharge plasmas. The fine subslab technique and weight probability method are introduced. These two methods are applied to a DC Ar-like gas discharge simulation. The disharge profiles obtained are in good agreement with the experimental ones. The electron energy loss mechanism in the cathode region is explained in detail. The electron energy distribution variation in the cathode fall and flat plasma density regions are expressed in a wide range of magnitude. The electron mean energy profile has a local minimum point which corresponds to the maximum excitation collision point. An electron group with the energy of 6 to 10 eV is observed in the flat plasma density region. This energy corresponds to the potential differnce from the maximum excitation collision point to this flat region. Electron energy distributions have a wide range of over 6 orders of magnitude with only 5000 test particles.
doi_str_mv 10.1143/jjap.36.4815
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1143_JJAP_36_4815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-ad73d7d00c952ab51a0683e074ee7c1634a965f111a80fa35c8edbcfce83a4733</originalsourceid><addsrcrecordid>eNo9j01Lw0AURQdRMFZ3_oBZuDRxXuYrXUkpVi0VXeg6vExm6pQ0CfPahf_eloqry4VzLxzGbkEUAEo-bDY4FtIUqgJ9xjKQyuZKGH3OMiFKyNW0LC_ZFdHmUI1WkLHHt6HfeT7H1A2c4nbf4S4OPR8CbyO5b0xrz8cOaYvE9xT7NQ-x95z2DXXY0DW7CNiRv_nLCftaPH3OX_LV-_PrfLbKnQKxy7G1srWtEG6qS2w0oDCV9MIq760DIxVOjQ4AgJUIKLWrfNu44HwlUVkpJ-z-9OvSQJR8qMcUt5h-ahD1Ub5eLmcftTT1Uf6A353wEclhFxL2LtL_pgRjtQb5C-5sWgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monte Carlo simulation of discharge plasmas using fine subslabs</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>GOTO, M ; KONDOH, Y ; MATSUOKA, A</creator><creatorcontrib>GOTO, M ; KONDOH, Y ; MATSUOKA, A</creatorcontrib><description>A self-consistent Monte Carlo modelling technique has been developed to study discharge plasmas. The fine subslab technique and weight probability method are introduced. These two methods are applied to a DC Ar-like gas discharge simulation. The disharge profiles obtained are in good agreement with the experimental ones. The electron energy loss mechanism in the cathode region is explained in detail. The electron energy distribution variation in the cathode fall and flat plasma density regions are expressed in a wide range of magnitude. The electron mean energy profile has a local minimum point which corresponds to the maximum excitation collision point. An electron group with the energy of 6 to 10 eV is observed in the flat plasma density region. This energy corresponds to the potential differnce from the maximum excitation collision point to this flat region. Electron energy distributions have a wide range of over 6 orders of magnitude with only 5000 test particles.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.1143/jjap.36.4815</identifier><identifier>CODEN: JJAPA5</identifier><language>eng</language><publisher>Tokyo: Japanese journal of applied physics</publisher><subject>Distribution theory and monte carlo studies ; Electric discharges ; Exact sciences and technology ; Mathematical methods in physics ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma simulation ; Probability theory, stochastic processes, and statistics</subject><ispartof>Japanese Journal of Applied Physics, 1997-07, Vol.36 (7B), p.4815-4819</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-ad73d7d00c952ab51a0683e074ee7c1634a965f111a80fa35c8edbcfce83a4733</citedby><cites>FETCH-LOGICAL-c410t-ad73d7d00c952ab51a0683e074ee7c1634a965f111a80fa35c8edbcfce83a4733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2167551$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GOTO, M</creatorcontrib><creatorcontrib>KONDOH, Y</creatorcontrib><creatorcontrib>MATSUOKA, A</creatorcontrib><title>Monte Carlo simulation of discharge plasmas using fine subslabs</title><title>Japanese Journal of Applied Physics</title><description>A self-consistent Monte Carlo modelling technique has been developed to study discharge plasmas. The fine subslab technique and weight probability method are introduced. These two methods are applied to a DC Ar-like gas discharge simulation. The disharge profiles obtained are in good agreement with the experimental ones. The electron energy loss mechanism in the cathode region is explained in detail. The electron energy distribution variation in the cathode fall and flat plasma density regions are expressed in a wide range of magnitude. The electron mean energy profile has a local minimum point which corresponds to the maximum excitation collision point. An electron group with the energy of 6 to 10 eV is observed in the flat plasma density region. This energy corresponds to the potential differnce from the maximum excitation collision point to this flat region. Electron energy distributions have a wide range of over 6 orders of magnitude with only 5000 test particles.</description><subject>Distribution theory and monte carlo studies</subject><subject>Electric discharges</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma simulation</subject><subject>Probability theory, stochastic processes, and statistics</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9j01Lw0AURQdRMFZ3_oBZuDRxXuYrXUkpVi0VXeg6vExm6pQ0CfPahf_eloqry4VzLxzGbkEUAEo-bDY4FtIUqgJ9xjKQyuZKGH3OMiFKyNW0LC_ZFdHmUI1WkLHHt6HfeT7H1A2c4nbf4S4OPR8CbyO5b0xrz8cOaYvE9xT7NQ-x95z2DXXY0DW7CNiRv_nLCftaPH3OX_LV-_PrfLbKnQKxy7G1srWtEG6qS2w0oDCV9MIq760DIxVOjQ4AgJUIKLWrfNu44HwlUVkpJ-z-9OvSQJR8qMcUt5h-ahD1Ub5eLmcftTT1Uf6A353wEclhFxL2LtL_pgRjtQb5C-5sWgE</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>GOTO, M</creator><creator>KONDOH, Y</creator><creator>MATSUOKA, A</creator><general>Japanese journal of applied physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970701</creationdate><title>Monte Carlo simulation of discharge plasmas using fine subslabs</title><author>GOTO, M ; KONDOH, Y ; MATSUOKA, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-ad73d7d00c952ab51a0683e074ee7c1634a965f111a80fa35c8edbcfce83a4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Distribution theory and monte carlo studies</topic><topic>Electric discharges</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma simulation</topic><topic>Probability theory, stochastic processes, and statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOTO, M</creatorcontrib><creatorcontrib>KONDOH, Y</creatorcontrib><creatorcontrib>MATSUOKA, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOTO, M</au><au>KONDOH, Y</au><au>MATSUOKA, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation of discharge plasmas using fine subslabs</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>36</volume><issue>7B</issue><spage>4815</spage><epage>4819</epage><pages>4815-4819</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPA5</coden><abstract>A self-consistent Monte Carlo modelling technique has been developed to study discharge plasmas. The fine subslab technique and weight probability method are introduced. These two methods are applied to a DC Ar-like gas discharge simulation. The disharge profiles obtained are in good agreement with the experimental ones. The electron energy loss mechanism in the cathode region is explained in detail. The electron energy distribution variation in the cathode fall and flat plasma density regions are expressed in a wide range of magnitude. The electron mean energy profile has a local minimum point which corresponds to the maximum excitation collision point. An electron group with the energy of 6 to 10 eV is observed in the flat plasma density region. This energy corresponds to the potential differnce from the maximum excitation collision point to this flat region. Electron energy distributions have a wide range of over 6 orders of magnitude with only 5000 test particles.</abstract><cop>Tokyo</cop><pub>Japanese journal of applied physics</pub><doi>10.1143/jjap.36.4815</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 1997-07, Vol.36 (7B), p.4815-4819
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_1143_JJAP_36_4815
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Distribution theory and monte carlo studies
Electric discharges
Exact sciences and technology
Mathematical methods in physics
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma simulation
Probability theory, stochastic processes, and statistics
title Monte Carlo simulation of discharge plasmas using fine subslabs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20of%20discharge%20plasmas%20using%20fine%20subslabs&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=GOTO,%20M&rft.date=1997-07-01&rft.volume=36&rft.issue=7B&rft.spage=4815&rft.epage=4819&rft.pages=4815-4819&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPA5&rft_id=info:doi/10.1143/jjap.36.4815&rft_dat=%3Cpascalfrancis_cross%3E2167551%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true