The double-padlock problem: Is secure classical information transmission possible without key exchange?

The idealized Kish-Sethuraman (KS) cipher is theoretically known to offer perfect security through a classical information channel. However, realization of the protocol is hitherto an open problem, as the required mathematical operators have not been identified in the previous literature. A mechanic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of modern physics. Conference series 2014, Vol.33, p.1460355
Hauptverfasser: Chappell, James M., Gunn, Lachlan J., Abbott, Derek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The idealized Kish-Sethuraman (KS) cipher is theoretically known to offer perfect security through a classical information channel. However, realization of the protocol is hitherto an open problem, as the required mathematical operators have not been identified in the previous literature. A mechanical analogy of this protocol can be seen as sending a message in a box using two padlocks; one locked by the Sender and the other locked by the Receiver, so that theoretically the message remains secure at all times. We seek a mathematical representation of this process, considering that it would be very unusual if there was a physical process with no mathematical description. We select Clifford's geometric algebra for this task as it is a natural formalism to handle rotations in spaces of various dimension. The significance of finding a mathematical description that describes the protocol, is that it is a possible step toward a physical realization having benefits in increased security with reduced complexity.
ISSN:2010-1945
2010-1945
DOI:10.1142/S201019451460355X