ESTIMATING THE FRACTAL DIMENSION OF THE S&P 500 INDEX USING WAVELET ANALYSIS

S&P 500 index data sampled at one-minute intervals over the course of 11.5 years (January 1989–May 2000) is analyzed, and in particular the Hurst parameter over segments of stationarity (the time period over which the Hurst parameter is almost constant) is estimated. An asymptotically unbiased a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical and applied finance 2004-08, Vol.7 (5), p.615-643
Hauptverfasser: BAYRAKTAR, ERHAN, POOR, H. VINCENT, SIRCAR, K. RONNIE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 5
container_start_page 615
container_title International journal of theoretical and applied finance
container_volume 7
creator BAYRAKTAR, ERHAN
POOR, H. VINCENT
SIRCAR, K. RONNIE
description S&P 500 index data sampled at one-minute intervals over the course of 11.5 years (January 1989–May 2000) is analyzed, and in particular the Hurst parameter over segments of stationarity (the time period over which the Hurst parameter is almost constant) is estimated. An asymptotically unbiased and efficient estimator using the log-scale spectrum is employed. The estimator is asymptotically Gaussian and the variance of the estimate that is obtained from a data segment of N points is of order $\frac{1}{N}$ . Wavelet analysis is tailor-made for the high frequency data set, since it has low computational complexity due to the pyramidal algorithm for computing the detail coefficients. This estimator is robust to additive non-stationarities, and here it is shown to exhibit some degree of robustness to multiplicative non-stationarities, such as seasonalities and volatility persistence, as well. This analysis suggests that the market became more efficient in the period 1997–2000.
doi_str_mv 10.1142/S021902490400258X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1142_S021902490400258X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>694496491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362X-78db0c227b596bc3a3276e70fd718f8e1c5e2fc11f23068b8822bc5389dcbfa13</originalsourceid><addsrcrecordid>eNplkMFOg0AQhjdGE5vaB_C28dAbujvLwnIkLW1JKDVCtZ4ILLsJhpbKtml8e8EaD_Y0h__7ZiY_QveUPFJqw1NCgHoEbI_YhAAXmys0oK7HLIcBXKNBH1t9fotGxlQFoZ7DODhsgKIgScOln4bxHKeLAM9e_EnqR3gaLoM4CVcxXs1-gmT8jDkhOIynwQavk15481-DKEixH_vRexImd-hG57VRo985ROtZkE4WVrSahxM_siRzYGO5oiyIBHAL7jmFZDkD11Eu0aVLhRaKSq5AS0o1MOKIQgiAQnImvFIWOqdsiMbnvfu2-Twqc8i2lZGqrvOdao4mY65n20DtDnz4B340x3bX_ZZBf5RzwjuIniHZNsa0Smf7ttrm7VdGSdb3m1302znk7Jyati6NrNTuUOlK_qmXyjepz3QT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232765505</pqid></control><display><type>article</type><title>ESTIMATING THE FRACTAL DIMENSION OF THE S&amp;P 500 INDEX USING WAVELET ANALYSIS</title><source>World Scientific Journals (Tsinghua Mirror)</source><source>World Scientific Journals</source><creator>BAYRAKTAR, ERHAN ; POOR, H. VINCENT ; SIRCAR, K. RONNIE</creator><creatorcontrib>BAYRAKTAR, ERHAN ; POOR, H. VINCENT ; SIRCAR, K. RONNIE</creatorcontrib><description>S&amp;P 500 index data sampled at one-minute intervals over the course of 11.5 years (January 1989–May 2000) is analyzed, and in particular the Hurst parameter over segments of stationarity (the time period over which the Hurst parameter is almost constant) is estimated. An asymptotically unbiased and efficient estimator using the log-scale spectrum is employed. The estimator is asymptotically Gaussian and the variance of the estimate that is obtained from a data segment of N points is of order $\frac{1}{N}$ . Wavelet analysis is tailor-made for the high frequency data set, since it has low computational complexity due to the pyramidal algorithm for computing the detail coefficients. This estimator is robust to additive non-stationarities, and here it is shown to exhibit some degree of robustness to multiplicative non-stationarities, such as seasonalities and volatility persistence, as well. This analysis suggests that the market became more efficient in the period 1997–2000.</description><identifier>ISSN: 0219-0249</identifier><identifier>EISSN: 1793-6322</identifier><identifier>DOI: 10.1142/S021902490400258X</identifier><language>eng</language><publisher>Singapore: World Scientific Publishing Company</publisher><subject>Applied economics ; Brownian motion ; Data analysis ; Estimation ; Financial analysis ; Financial theory ; Indexes ; Securities markets ; Stochastic processes ; Studies</subject><ispartof>International journal of theoretical and applied finance, 2004-08, Vol.7 (5), p.615-643</ispartof><rights>2004, World Scientific Publishing Company</rights><rights>Copyright World Scientific Publishing Co. Pte., Ltd. Aug 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362X-78db0c227b596bc3a3276e70fd718f8e1c5e2fc11f23068b8822bc5389dcbfa13</citedby><cites>FETCH-LOGICAL-c362X-78db0c227b596bc3a3276e70fd718f8e1c5e2fc11f23068b8822bc5389dcbfa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.worldscientific.com/doi/reader/10.1142/S021902490400258X$$EPDF$$P50$$Gworldscientific$$H</linktopdf><link.rule.ids>314,777,781,3200,3207,4859,4860,27905,27906,55556,55568</link.rule.ids></links><search><creatorcontrib>BAYRAKTAR, ERHAN</creatorcontrib><creatorcontrib>POOR, H. VINCENT</creatorcontrib><creatorcontrib>SIRCAR, K. RONNIE</creatorcontrib><title>ESTIMATING THE FRACTAL DIMENSION OF THE S&amp;P 500 INDEX USING WAVELET ANALYSIS</title><title>International journal of theoretical and applied finance</title><description>S&amp;P 500 index data sampled at one-minute intervals over the course of 11.5 years (January 1989–May 2000) is analyzed, and in particular the Hurst parameter over segments of stationarity (the time period over which the Hurst parameter is almost constant) is estimated. An asymptotically unbiased and efficient estimator using the log-scale spectrum is employed. The estimator is asymptotically Gaussian and the variance of the estimate that is obtained from a data segment of N points is of order $\frac{1}{N}$ . Wavelet analysis is tailor-made for the high frequency data set, since it has low computational complexity due to the pyramidal algorithm for computing the detail coefficients. This estimator is robust to additive non-stationarities, and here it is shown to exhibit some degree of robustness to multiplicative non-stationarities, such as seasonalities and volatility persistence, as well. This analysis suggests that the market became more efficient in the period 1997–2000.</description><subject>Applied economics</subject><subject>Brownian motion</subject><subject>Data analysis</subject><subject>Estimation</subject><subject>Financial analysis</subject><subject>Financial theory</subject><subject>Indexes</subject><subject>Securities markets</subject><subject>Stochastic processes</subject><subject>Studies</subject><issn>0219-0249</issn><issn>1793-6322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkMFOg0AQhjdGE5vaB_C28dAbujvLwnIkLW1JKDVCtZ4ILLsJhpbKtml8e8EaD_Y0h__7ZiY_QveUPFJqw1NCgHoEbI_YhAAXmys0oK7HLIcBXKNBH1t9fotGxlQFoZ7DODhsgKIgScOln4bxHKeLAM9e_EnqR3gaLoM4CVcxXs1-gmT8jDkhOIynwQavk15481-DKEixH_vRexImd-hG57VRo985ROtZkE4WVrSahxM_siRzYGO5oiyIBHAL7jmFZDkD11Eu0aVLhRaKSq5AS0o1MOKIQgiAQnImvFIWOqdsiMbnvfu2-Twqc8i2lZGqrvOdao4mY65n20DtDnz4B340x3bX_ZZBf5RzwjuIniHZNsa0Smf7ttrm7VdGSdb3m1302znk7Jyati6NrNTuUOlK_qmXyjepz3QT</recordid><startdate>200408</startdate><enddate>200408</enddate><creator>BAYRAKTAR, ERHAN</creator><creator>POOR, H. VINCENT</creator><creator>SIRCAR, K. RONNIE</creator><general>World Scientific Publishing Company</general><general>World Scientific Publishing Co. Pte., Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200408</creationdate><title>ESTIMATING THE FRACTAL DIMENSION OF THE S&amp;P 500 INDEX USING WAVELET ANALYSIS</title><author>BAYRAKTAR, ERHAN ; POOR, H. VINCENT ; SIRCAR, K. RONNIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362X-78db0c227b596bc3a3276e70fd718f8e1c5e2fc11f23068b8822bc5389dcbfa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied economics</topic><topic>Brownian motion</topic><topic>Data analysis</topic><topic>Estimation</topic><topic>Financial analysis</topic><topic>Financial theory</topic><topic>Indexes</topic><topic>Securities markets</topic><topic>Stochastic processes</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAYRAKTAR, ERHAN</creatorcontrib><creatorcontrib>POOR, H. VINCENT</creatorcontrib><creatorcontrib>SIRCAR, K. RONNIE</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>International journal of theoretical and applied finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAYRAKTAR, ERHAN</au><au>POOR, H. VINCENT</au><au>SIRCAR, K. RONNIE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ESTIMATING THE FRACTAL DIMENSION OF THE S&amp;P 500 INDEX USING WAVELET ANALYSIS</atitle><jtitle>International journal of theoretical and applied finance</jtitle><date>2004-08</date><risdate>2004</risdate><volume>7</volume><issue>5</issue><spage>615</spage><epage>643</epage><pages>615-643</pages><issn>0219-0249</issn><eissn>1793-6322</eissn><abstract>S&amp;P 500 index data sampled at one-minute intervals over the course of 11.5 years (January 1989–May 2000) is analyzed, and in particular the Hurst parameter over segments of stationarity (the time period over which the Hurst parameter is almost constant) is estimated. An asymptotically unbiased and efficient estimator using the log-scale spectrum is employed. The estimator is asymptotically Gaussian and the variance of the estimate that is obtained from a data segment of N points is of order $\frac{1}{N}$ . Wavelet analysis is tailor-made for the high frequency data set, since it has low computational complexity due to the pyramidal algorithm for computing the detail coefficients. This estimator is robust to additive non-stationarities, and here it is shown to exhibit some degree of robustness to multiplicative non-stationarities, such as seasonalities and volatility persistence, as well. This analysis suggests that the market became more efficient in the period 1997–2000.</abstract><cop>Singapore</cop><pub>World Scientific Publishing Company</pub><doi>10.1142/S021902490400258X</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0219-0249
ispartof International journal of theoretical and applied finance, 2004-08, Vol.7 (5), p.615-643
issn 0219-0249
1793-6322
language eng
recordid cdi_crossref_primary_10_1142_S021902490400258X
source World Scientific Journals (Tsinghua Mirror); World Scientific Journals
subjects Applied economics
Brownian motion
Data analysis
Estimation
Financial analysis
Financial theory
Indexes
Securities markets
Stochastic processes
Studies
title ESTIMATING THE FRACTAL DIMENSION OF THE S&P 500 INDEX USING WAVELET ANALYSIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ESTIMATING%20THE%20FRACTAL%20DIMENSION%20OF%20THE%20S&P%20500%20INDEX%20USING%20WAVELET%20ANALYSIS&rft.jtitle=International%20journal%20of%20theoretical%20and%20applied%20finance&rft.au=BAYRAKTAR,%20ERHAN&rft.date=2004-08&rft.volume=7&rft.issue=5&rft.spage=615&rft.epage=643&rft.pages=615-643&rft.issn=0219-0249&rft.eissn=1793-6322&rft_id=info:doi/10.1142/S021902490400258X&rft_dat=%3Cproquest_cross%3E694496491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232765505&rft_id=info:pmid/&rfr_iscdi=true