Statistical error analysis for biomass density and leaf area index estimation

Dimension analysis uses fitted allometric relationships to estimate whole-tree characteristics from dimensional measurements. Errors in dimension-analysis estimates of forest stand biomass and leaf area are often unreported and rarely analyzed. Errors may arise from measurement error, choice of mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 1991-07, Vol.21 (7), p.974-989
Hauptverfasser: Woods, Kerry D, Feiveson, A. H, Botkin, Daniel B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 7
container_start_page 974
container_title Canadian journal of forest research
container_volume 21
creator Woods, Kerry D
Feiveson, A. H
Botkin, Daniel B
description Dimension analysis uses fitted allometric relationships to estimate whole-tree characteristics from dimensional measurements. Errors in dimension-analysis estimates of forest stand biomass and leaf area are often unreported and rarely analyzed. Errors may arise from measurement error, choice of model, fitting of parameters in models, and spatial variation within a sampled stand. Examination of these components separately will show how efficiency can be most effectively increased and balanced. We used dimension analysis to estimate biomass density and leaf area index for stands of trembling aspen (Populustremuloides Michx.) and black spruce (Piceamariana (Mill.) B.S.P.) in the Superior National Forest, Minnesota, United States. Estimates had average coefficients of variation ranging from 11% (aspen biomass density) to 23% (spruce leaf area index). Partitioning of these errors showed that error sources varied with species, variable, and site conditions, but most error was due either to parameter estimation or to spatial variation; model inaccuracies contributed only trivially to total error. The most cost-effective means of increasing precision of estimation would be to sacrifice more trees (even with less precise measurements of individual trees) to fit the models, or sample larger areas in stands; more sophisticated models would have little effect on error.
doi_str_mv 10.1139/x91-135
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1139_x91_135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4941654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-5e3ab5e5c02c08bd04ce0dc56b15be8f2f029872b25858e495a0d7a8ea160ca83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7iX8hBEITqJGna9CjiF6x4UM9lmk4w0m2XTA-7_97IijdPwzDPvMw8QpwruFbKNDfbRhXK2AOxUBpcUYGpD8UCoLSFhao-FifMXwBgKgML8fI24xx5jh4HSSlNSeKIw44jy5CbLk5rZJY9jRznXR72ciAMEhOhjGNPW0l5fZ1TpvFUHAUcmM5-61J8PNy_3z0Vq9fH57vbVeG1q-fCksHOkvWgPbiuh9IT9N5WnbIduaAD6MbVutPWWUdlYxH6Gh2hqsCjM0txuc_1aWJOFNpNyiekXaug_bHQZgtttpDJiz25Qc4vhoSjj_yHl02pKltm7GqPjcknYsLkP__N_AYWWWrS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical error analysis for biomass density and leaf area index estimation</title><source>Alma/SFX Local Collection</source><creator>Woods, Kerry D ; Feiveson, A. H ; Botkin, Daniel B</creator><creatorcontrib>Woods, Kerry D ; Feiveson, A. H ; Botkin, Daniel B</creatorcontrib><description>Dimension analysis uses fitted allometric relationships to estimate whole-tree characteristics from dimensional measurements. Errors in dimension-analysis estimates of forest stand biomass and leaf area are often unreported and rarely analyzed. Errors may arise from measurement error, choice of model, fitting of parameters in models, and spatial variation within a sampled stand. Examination of these components separately will show how efficiency can be most effectively increased and balanced. We used dimension analysis to estimate biomass density and leaf area index for stands of trembling aspen (Populustremuloides Michx.) and black spruce (Piceamariana (Mill.) B.S.P.) in the Superior National Forest, Minnesota, United States. Estimates had average coefficients of variation ranging from 11% (aspen biomass density) to 23% (spruce leaf area index). Partitioning of these errors showed that error sources varied with species, variable, and site conditions, but most error was due either to parameter estimation or to spatial variation; model inaccuracies contributed only trivially to total error. The most cost-effective means of increasing precision of estimation would be to sacrifice more trees (even with less precise measurements of individual trees) to fit the models, or sample larger areas in stands; more sophisticated models would have little effect on error.</description><identifier>ISSN: 0045-5067</identifier><identifier>EISSN: 1208-6037</identifier><identifier>DOI: 10.1139/x91-135</identifier><identifier>CODEN: CJFRAR</identifier><language>eng</language><publisher>Ottawa, Canada: NRC Research Press</publisher><subject>Biological and medical sciences ; Dendrometry. Forest inventory ; Forestry ; Fundamental and applied biological sciences. Psychology</subject><ispartof>Canadian journal of forest research, 1991-07, Vol.21 (7), p.974-989</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-5e3ab5e5c02c08bd04ce0dc56b15be8f2f029872b25858e495a0d7a8ea160ca83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4941654$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Kerry D</creatorcontrib><creatorcontrib>Feiveson, A. H</creatorcontrib><creatorcontrib>Botkin, Daniel B</creatorcontrib><title>Statistical error analysis for biomass density and leaf area index estimation</title><title>Canadian journal of forest research</title><addtitle>Revue canadienne de recherche forestière</addtitle><description>Dimension analysis uses fitted allometric relationships to estimate whole-tree characteristics from dimensional measurements. Errors in dimension-analysis estimates of forest stand biomass and leaf area are often unreported and rarely analyzed. Errors may arise from measurement error, choice of model, fitting of parameters in models, and spatial variation within a sampled stand. Examination of these components separately will show how efficiency can be most effectively increased and balanced. We used dimension analysis to estimate biomass density and leaf area index for stands of trembling aspen (Populustremuloides Michx.) and black spruce (Piceamariana (Mill.) B.S.P.) in the Superior National Forest, Minnesota, United States. Estimates had average coefficients of variation ranging from 11% (aspen biomass density) to 23% (spruce leaf area index). Partitioning of these errors showed that error sources varied with species, variable, and site conditions, but most error was due either to parameter estimation or to spatial variation; model inaccuracies contributed only trivially to total error. The most cost-effective means of increasing precision of estimation would be to sacrifice more trees (even with less precise measurements of individual trees) to fit the models, or sample larger areas in stands; more sophisticated models would have little effect on error.</description><subject>Biological and medical sciences</subject><subject>Dendrometry. Forest inventory</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><issn>0045-5067</issn><issn>1208-6037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7iX8hBEITqJGna9CjiF6x4UM9lmk4w0m2XTA-7_97IijdPwzDPvMw8QpwruFbKNDfbRhXK2AOxUBpcUYGpD8UCoLSFhao-FifMXwBgKgML8fI24xx5jh4HSSlNSeKIw44jy5CbLk5rZJY9jRznXR72ciAMEhOhjGNPW0l5fZ1TpvFUHAUcmM5-61J8PNy_3z0Vq9fH57vbVeG1q-fCksHOkvWgPbiuh9IT9N5WnbIduaAD6MbVutPWWUdlYxH6Gh2hqsCjM0txuc_1aWJOFNpNyiekXaug_bHQZgtttpDJiz25Qc4vhoSjj_yHl02pKltm7GqPjcknYsLkP__N_AYWWWrS</recordid><startdate>19910701</startdate><enddate>19910701</enddate><creator>Woods, Kerry D</creator><creator>Feiveson, A. H</creator><creator>Botkin, Daniel B</creator><general>NRC Research Press</general><general>National Research Council of Canada</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19910701</creationdate><title>Statistical error analysis for biomass density and leaf area index estimation</title><author>Woods, Kerry D ; Feiveson, A. H ; Botkin, Daniel B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-5e3ab5e5c02c08bd04ce0dc56b15be8f2f029872b25858e495a0d7a8ea160ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Biological and medical sciences</topic><topic>Dendrometry. Forest inventory</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Kerry D</creatorcontrib><creatorcontrib>Feiveson, A. H</creatorcontrib><creatorcontrib>Botkin, Daniel B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Canadian journal of forest research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Kerry D</au><au>Feiveson, A. H</au><au>Botkin, Daniel B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical error analysis for biomass density and leaf area index estimation</atitle><jtitle>Canadian journal of forest research</jtitle><addtitle>Revue canadienne de recherche forestière</addtitle><date>1991-07-01</date><risdate>1991</risdate><volume>21</volume><issue>7</issue><spage>974</spage><epage>989</epage><pages>974-989</pages><issn>0045-5067</issn><eissn>1208-6037</eissn><coden>CJFRAR</coden><abstract>Dimension analysis uses fitted allometric relationships to estimate whole-tree characteristics from dimensional measurements. Errors in dimension-analysis estimates of forest stand biomass and leaf area are often unreported and rarely analyzed. Errors may arise from measurement error, choice of model, fitting of parameters in models, and spatial variation within a sampled stand. Examination of these components separately will show how efficiency can be most effectively increased and balanced. We used dimension analysis to estimate biomass density and leaf area index for stands of trembling aspen (Populustremuloides Michx.) and black spruce (Piceamariana (Mill.) B.S.P.) in the Superior National Forest, Minnesota, United States. Estimates had average coefficients of variation ranging from 11% (aspen biomass density) to 23% (spruce leaf area index). Partitioning of these errors showed that error sources varied with species, variable, and site conditions, but most error was due either to parameter estimation or to spatial variation; model inaccuracies contributed only trivially to total error. The most cost-effective means of increasing precision of estimation would be to sacrifice more trees (even with less precise measurements of individual trees) to fit the models, or sample larger areas in stands; more sophisticated models would have little effect on error.</abstract><cop>Ottawa, Canada</cop><pub>NRC Research Press</pub><doi>10.1139/x91-135</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-5067
ispartof Canadian journal of forest research, 1991-07, Vol.21 (7), p.974-989
issn 0045-5067
1208-6037
language eng
recordid cdi_crossref_primary_10_1139_x91_135
source Alma/SFX Local Collection
subjects Biological and medical sciences
Dendrometry. Forest inventory
Forestry
Fundamental and applied biological sciences. Psychology
title Statistical error analysis for biomass density and leaf area index estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20error%20analysis%20for%20biomass%20density%20and%20leaf%20area%20index%20estimation&rft.jtitle=Canadian%20journal%20of%20forest%20research&rft.au=Woods,%20Kerry%20D&rft.date=1991-07-01&rft.volume=21&rft.issue=7&rft.spage=974&rft.epage=989&rft.pages=974-989&rft.issn=0045-5067&rft.eissn=1208-6037&rft.coden=CJFRAR&rft_id=info:doi/10.1139/x91-135&rft_dat=%3Cpascalfrancis_cross%3E4941654%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true