Biodegradation of monoethanolamine in soil monitored by electrical conductivity measurement: an observational approach
Monoethanolamine (MEA) is commonly used by the natural gas industry to remove acid gases from the natural gas stream. A series of pan test studies was conducted to examine the biodegradability of MEA in soil recovered from a decommissioned sour gas processing plant site. Test results indicate that M...
Gespeichert in:
Veröffentlicht in: | Canadian geotechnical journal 2004-12, Vol.41 (6), p.1026-1037 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1037 |
---|---|
container_issue | 6 |
container_start_page | 1026 |
container_title | Canadian geotechnical journal |
container_volume | 41 |
creator | Wong, R CK Bentley, L R Ndegwa, A W Chu, A Gharibi, M Lunn, S RD |
description | Monoethanolamine (MEA) is commonly used by the natural gas industry to remove acid gases from the natural gas stream. A series of pan test studies was conducted to examine the biodegradability of MEA in soil recovered from a decommissioned sour gas processing plant site. Test results indicate that MEA was successfully biodegraded or transformed into simple compounds under aerobic and anaerobic conditions. The electrical conductivity (EC) of the soil evolved with changing chemical conditions of its by-products during degradation of MEA. Based on experimental observations, five ranges of EC were correlated with five geochemical zones consisting of various concentrations of MEA and its by-products. The five ranges of EC were translated into equivalent in situ EC ranges. Using these in situ EC ranges, an electrical resistivity tomography image was used to create a geochemical interpretation of the subsurface beneath the plant site. The geochemical interpretation can provide useful information for detailed site assessment and remediation design.Key words: electrical conductivity, biodegradation, monoethanolamine, ammonia, acetate, electrical resistivity tomography, site characterization, observational approach. |
doi_str_mv | 10.1139/t04-044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1139_t04_044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>798914871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-51ce541fb623bbc7228ceb131daa9917f30e6723aae783c983bc1bb9ef4f94f43</originalsourceid><addsrcrecordid>eNp90dFqFDEUBuAgCq5VfIVBsEJhNGeSncx4V4tVoeCNXoeTzImbMpOsSWZh397ULhQEe5VAPv5Dzs_Ya-DvAcT4oXDZcimfsA10fGh7Dvwp23Be76JX8jl7kfMt5yBl123Y4ZOPE_1KOGHxMTTRNUsMkcoOQ5xx8YEaH5oc_Xz34EtMNDXm2NBMtiRvcW5sDNNqiz_4cmwWwrwmWiiUjw3WQJMpHf6GV4r7fYpody_ZM4dzplen84z9vP784-pre_P9y7ery5vWSoDSbsHSVoIzfSeMsarrBksGBEyI4wjKCU696gQiqUHYcRDGgjEjOelG6aQ4Y-_uc-vY3yvlohefLc0zBopr1koKPqihH6o8f1TCKAUoBRW--QfexjXVz2XdgZAw9B1_mGtTzDmR0_vkF0xHDVzf1aRrTbrWVOXbUxzmukyXMFifH3i_ha1QfXUX9y4kmygTJrt7JPT8__iE9H5y4g99aq-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213418620</pqid></control><display><type>article</type><title>Biodegradation of monoethanolamine in soil monitored by electrical conductivity measurement: an observational approach</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>Wong, R CK ; Bentley, L R ; Ndegwa, A W ; Chu, A ; Gharibi, M ; Lunn, S RD</creator><creatorcontrib>Wong, R CK ; Bentley, L R ; Ndegwa, A W ; Chu, A ; Gharibi, M ; Lunn, S RD</creatorcontrib><description>Monoethanolamine (MEA) is commonly used by the natural gas industry to remove acid gases from the natural gas stream. A series of pan test studies was conducted to examine the biodegradability of MEA in soil recovered from a decommissioned sour gas processing plant site. Test results indicate that MEA was successfully biodegraded or transformed into simple compounds under aerobic and anaerobic conditions. The electrical conductivity (EC) of the soil evolved with changing chemical conditions of its by-products during degradation of MEA. Based on experimental observations, five ranges of EC were correlated with five geochemical zones consisting of various concentrations of MEA and its by-products. The five ranges of EC were translated into equivalent in situ EC ranges. Using these in situ EC ranges, an electrical resistivity tomography image was used to create a geochemical interpretation of the subsurface beneath the plant site. The geochemical interpretation can provide useful information for detailed site assessment and remediation design.Key words: electrical conductivity, biodegradation, monoethanolamine, ammonia, acetate, electrical resistivity tomography, site characterization, observational approach.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/t04-044</identifier><identifier>CODEN: CGJOAH</identifier><language>eng</language><publisher>Ottawa, Canada: NRC Research Press</publisher><subject>Ammonia ; Anaerobic conditions ; Biodegradation ; Conductivity ; Earth sciences ; Earth, ocean, space ; Electrical resistivity ; Engineering and environment geology. Geothermics ; Engineering geology ; Ethanolamine ; Exact sciences and technology ; Geochemistry ; Natural gas ; Oil and gas industry ; Soils ; Tomography</subject><ispartof>Canadian geotechnical journal, 2004-12, Vol.41 (6), p.1026-1037</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright National Research Council of Canada Dec 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-51ce541fb623bbc7228ceb131daa9917f30e6723aae783c983bc1bb9ef4f94f43</citedby><cites>FETCH-LOGICAL-c411t-51ce541fb623bbc7228ceb131daa9917f30e6723aae783c983bc1bb9ef4f94f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/t04-044$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/t04-044$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,777,781,2919,27905,27906,64407,64985</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16515376$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, R CK</creatorcontrib><creatorcontrib>Bentley, L R</creatorcontrib><creatorcontrib>Ndegwa, A W</creatorcontrib><creatorcontrib>Chu, A</creatorcontrib><creatorcontrib>Gharibi, M</creatorcontrib><creatorcontrib>Lunn, S RD</creatorcontrib><title>Biodegradation of monoethanolamine in soil monitored by electrical conductivity measurement: an observational approach</title><title>Canadian geotechnical journal</title><addtitle>Revue canadienne de géotechnique</addtitle><description>Monoethanolamine (MEA) is commonly used by the natural gas industry to remove acid gases from the natural gas stream. A series of pan test studies was conducted to examine the biodegradability of MEA in soil recovered from a decommissioned sour gas processing plant site. Test results indicate that MEA was successfully biodegraded or transformed into simple compounds under aerobic and anaerobic conditions. The electrical conductivity (EC) of the soil evolved with changing chemical conditions of its by-products during degradation of MEA. Based on experimental observations, five ranges of EC were correlated with five geochemical zones consisting of various concentrations of MEA and its by-products. The five ranges of EC were translated into equivalent in situ EC ranges. Using these in situ EC ranges, an electrical resistivity tomography image was used to create a geochemical interpretation of the subsurface beneath the plant site. The geochemical interpretation can provide useful information for detailed site assessment and remediation design.Key words: electrical conductivity, biodegradation, monoethanolamine, ammonia, acetate, electrical resistivity tomography, site characterization, observational approach.</description><subject>Ammonia</subject><subject>Anaerobic conditions</subject><subject>Biodegradation</subject><subject>Conductivity</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Electrical resistivity</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Ethanolamine</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Natural gas</subject><subject>Oil and gas industry</subject><subject>Soils</subject><subject>Tomography</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90dFqFDEUBuAgCq5VfIVBsEJhNGeSncx4V4tVoeCNXoeTzImbMpOsSWZh397ULhQEe5VAPv5Dzs_Ya-DvAcT4oXDZcimfsA10fGh7Dvwp23Be76JX8jl7kfMt5yBl123Y4ZOPE_1KOGHxMTTRNUsMkcoOQ5xx8YEaH5oc_Xz34EtMNDXm2NBMtiRvcW5sDNNqiz_4cmwWwrwmWiiUjw3WQJMpHf6GV4r7fYpody_ZM4dzplen84z9vP784-pre_P9y7ery5vWSoDSbsHSVoIzfSeMsarrBksGBEyI4wjKCU696gQiqUHYcRDGgjEjOelG6aQ4Y-_uc-vY3yvlohefLc0zBopr1koKPqihH6o8f1TCKAUoBRW--QfexjXVz2XdgZAw9B1_mGtTzDmR0_vkF0xHDVzf1aRrTbrWVOXbUxzmukyXMFifH3i_ha1QfXUX9y4kmygTJrt7JPT8__iE9H5y4g99aq-M</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Wong, R CK</creator><creator>Bentley, L R</creator><creator>Ndegwa, A W</creator><creator>Chu, A</creator><creator>Gharibi, M</creator><creator>Lunn, S RD</creator><general>NRC Research Press</general><general>National Research Council of Canada</general><general>Canadian Science Publishing NRC Research Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M3G</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7QO</scope><scope>7T7</scope><scope>7TV</scope><scope>P64</scope></search><sort><creationdate>20041201</creationdate><title>Biodegradation of monoethanolamine in soil monitored by electrical conductivity measurement: an observational approach</title><author>Wong, R CK ; Bentley, L R ; Ndegwa, A W ; Chu, A ; Gharibi, M ; Lunn, S RD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-51ce541fb623bbc7228ceb131daa9917f30e6723aae783c983bc1bb9ef4f94f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Ammonia</topic><topic>Anaerobic conditions</topic><topic>Biodegradation</topic><topic>Conductivity</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Electrical resistivity</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Ethanolamine</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Natural gas</topic><topic>Oil and gas industry</topic><topic>Soils</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, R CK</creatorcontrib><creatorcontrib>Bentley, L R</creatorcontrib><creatorcontrib>Ndegwa, A W</creatorcontrib><creatorcontrib>Chu, A</creatorcontrib><creatorcontrib>Gharibi, M</creatorcontrib><creatorcontrib>Lunn, S RD</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>CBCA Reference & Current Events</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, R CK</au><au>Bentley, L R</au><au>Ndegwa, A W</au><au>Chu, A</au><au>Gharibi, M</au><au>Lunn, S RD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradation of monoethanolamine in soil monitored by electrical conductivity measurement: an observational approach</atitle><jtitle>Canadian geotechnical journal</jtitle><addtitle>Revue canadienne de géotechnique</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>41</volume><issue>6</issue><spage>1026</spage><epage>1037</epage><pages>1026-1037</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><coden>CGJOAH</coden><abstract>Monoethanolamine (MEA) is commonly used by the natural gas industry to remove acid gases from the natural gas stream. A series of pan test studies was conducted to examine the biodegradability of MEA in soil recovered from a decommissioned sour gas processing plant site. Test results indicate that MEA was successfully biodegraded or transformed into simple compounds under aerobic and anaerobic conditions. The electrical conductivity (EC) of the soil evolved with changing chemical conditions of its by-products during degradation of MEA. Based on experimental observations, five ranges of EC were correlated with five geochemical zones consisting of various concentrations of MEA and its by-products. The five ranges of EC were translated into equivalent in situ EC ranges. Using these in situ EC ranges, an electrical resistivity tomography image was used to create a geochemical interpretation of the subsurface beneath the plant site. The geochemical interpretation can provide useful information for detailed site assessment and remediation design.Key words: electrical conductivity, biodegradation, monoethanolamine, ammonia, acetate, electrical resistivity tomography, site characterization, observational approach.</abstract><cop>Ottawa, Canada</cop><pub>NRC Research Press</pub><doi>10.1139/t04-044</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-3674 |
ispartof | Canadian geotechnical journal, 2004-12, Vol.41 (6), p.1026-1037 |
issn | 0008-3674 1208-6010 |
language | eng |
recordid | cdi_crossref_primary_10_1139_t04_044 |
source | NRC Research Press; Alma/SFX Local Collection |
subjects | Ammonia Anaerobic conditions Biodegradation Conductivity Earth sciences Earth, ocean, space Electrical resistivity Engineering and environment geology. Geothermics Engineering geology Ethanolamine Exact sciences and technology Geochemistry Natural gas Oil and gas industry Soils Tomography |
title | Biodegradation of monoethanolamine in soil monitored by electrical conductivity measurement: an observational approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradation%20of%20monoethanolamine%20in%20soil%20monitored%20by%20electrical%20conductivity%20measurement:%20an%20observational%20approach&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=Wong,%20R%20CK&rft.date=2004-12-01&rft.volume=41&rft.issue=6&rft.spage=1026&rft.epage=1037&rft.pages=1026-1037&rft.issn=0008-3674&rft.eissn=1208-6010&rft.coden=CGJOAH&rft_id=info:doi/10.1139/t04-044&rft_dat=%3Cproquest_cross%3E798914871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213418620&rft_id=info:pmid/&rfr_iscdi=true |