Adaptive Solution to Two-Dimensional Partial Differential Equations in Curved Domains Using the Monge--Ampére Equation

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2019-01, Vol.41 (2), p.A1331-A1356
Hauptverfasser: DiPietro, Kelsey L., Lindsay, Alan E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A1356
container_issue 2
container_start_page A1331
container_title SIAM journal on scientific computing
container_volume 41
creator DiPietro, Kelsey L.
Lindsay, Alan E.
description
doi_str_mv 10.1137/18M123075X
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1137_18M123075X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1137_18M123075X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-13adfe3cc0098f207f25ef47aeb317a4b910c3b8559bf6f06dcc17b6f21519743</originalsourceid><addsrcrecordid>eNpFUN1KwzAYDaLgnN74BLkWovmSpmkvxzansKHgBt6VNE1mZG1m0m34SD6HL2arolfnB86BcxC6BHoNwOUNZAtgnErxfIQGQHNBJOTyuOdpQjImxSk6i_GVUkiTnA3QYVSpbev2Bj_5za51vsGtx8uDJxNXmyZ2htrgRxVa1-HEWWuCab7F9G2n-kDErsHjXdibCk98rVznrKJr1rh9MXjhm7UhZFRvPz-C-QudoxOrNtFc_OIQrW6ny_EdmT_M7sejOdGMQ0uAq8oarjWleWYZlZYJYxOpTMlBqqTMgWpeZkLkpU0tTSutQZapZSC64QkfoqufXh18jMHYYhtcrcJ7AbToLyv-L-NftDRgiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive Solution to Two-Dimensional Partial Differential Equations in Curved Domains Using the Monge--Ampére Equation</title><source>SIAM Journals Online</source><creator>DiPietro, Kelsey L. ; Lindsay, Alan E.</creator><creatorcontrib>DiPietro, Kelsey L. ; Lindsay, Alan E.</creatorcontrib><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/18M123075X</identifier><language>eng</language><ispartof>SIAM journal on scientific computing, 2019-01, Vol.41 (2), p.A1331-A1356</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-13adfe3cc0098f207f25ef47aeb317a4b910c3b8559bf6f06dcc17b6f21519743</citedby><cites>FETCH-LOGICAL-c231t-13adfe3cc0098f207f25ef47aeb317a4b910c3b8559bf6f06dcc17b6f21519743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>DiPietro, Kelsey L.</creatorcontrib><creatorcontrib>Lindsay, Alan E.</creatorcontrib><title>Adaptive Solution to Two-Dimensional Partial Differential Equations in Curved Domains Using the Monge--Ampére Equation</title><title>SIAM journal on scientific computing</title><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFUN1KwzAYDaLgnN74BLkWovmSpmkvxzansKHgBt6VNE1mZG1m0m34SD6HL2arolfnB86BcxC6BHoNwOUNZAtgnErxfIQGQHNBJOTyuOdpQjImxSk6i_GVUkiTnA3QYVSpbev2Bj_5za51vsGtx8uDJxNXmyZ2htrgRxVa1-HEWWuCab7F9G2n-kDErsHjXdibCk98rVznrKJr1rh9MXjhm7UhZFRvPz-C-QudoxOrNtFc_OIQrW6ny_EdmT_M7sejOdGMQ0uAq8oarjWleWYZlZYJYxOpTMlBqqTMgWpeZkLkpU0tTSutQZapZSC64QkfoqufXh18jMHYYhtcrcJ7AbToLyv-L-NftDRgiQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>DiPietro, Kelsey L.</creator><creator>Lindsay, Alan E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201901</creationdate><title>Adaptive Solution to Two-Dimensional Partial Differential Equations in Curved Domains Using the Monge--Ampére Equation</title><author>DiPietro, Kelsey L. ; Lindsay, Alan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-13adfe3cc0098f207f25ef47aeb317a4b910c3b8559bf6f06dcc17b6f21519743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiPietro, Kelsey L.</creatorcontrib><creatorcontrib>Lindsay, Alan E.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiPietro, Kelsey L.</au><au>Lindsay, Alan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Solution to Two-Dimensional Partial Differential Equations in Curved Domains Using the Monge--Ampére Equation</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2019-01</date><risdate>2019</risdate><volume>41</volume><issue>2</issue><spage>A1331</spage><epage>A1356</epage><pages>A1331-A1356</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><doi>10.1137/18M123075X</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2019-01, Vol.41 (2), p.A1331-A1356
issn 1064-8275
1095-7197
language eng
recordid cdi_crossref_primary_10_1137_18M123075X
source SIAM Journals Online
title Adaptive Solution to Two-Dimensional Partial Differential Equations in Curved Domains Using the Monge--Ampére Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Solution%20to%20Two-Dimensional%20Partial%20Differential%20Equations%20in%20Curved%20Domains%20Using%20the%20Monge--Amp%C3%A9re%20Equation&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=DiPietro,%20Kelsey%20L.&rft.date=2019-01&rft.volume=41&rft.issue=2&rft.spage=A1331&rft.epage=A1356&rft.pages=A1331-A1356&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/18M123075X&rft_dat=%3Ccrossref%3E10_1137_18M123075X%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true