ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS

In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2018-01, Vol.56 (4), p.2148-2177
Hauptverfasser: CARLINI, ELISABETTA, SILVA, FRANCISCO J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2177
container_issue 4
container_start_page 2148
container_title SIAM journal on numerical analysis
container_volume 56
creator CARLINI, ELISABETTA
SILVA, FRANCISCO J.
description In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.
doi_str_mv 10.1137/17M1143022
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_17M1143022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45048455</jstor_id><sourcerecordid>45048455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-418f3f95c712d87d4ea71622a1357ff0842f5b68f3e28175f5a46fc5d8f68bae3</originalsourceid><addsrcrecordid>eNpF0E1Pg0AQBuCN0USsXryb7NlkdWc_2OVI6LYlUBaBetADoZRNbDQ10Iv_vihGT5N588wcXoRugT4AcPUIag0gOGXsDHlAA0kUKHqOPEq5T0Cw4BJdDcOejrsG7qFXm-FqZfA8LqPCVPFLWMVjZBe4tGuDM5ulcWbCAi9skpiC5GmYRQlJbLq2S1vYZ2yeNj83JQ6zOQ7zPI2jKbhGF655H7qb3zlDm4WpohVJ7XI0KWmZDo5EgHbcBbJVwHZa7UTXKPAZa4BL5RzVgjm59UfUMQ1KOtkI37Vyp52vt03HZ-h--tv2h2HoO1d_9m8fTf9VA62_a6n_axnx3YT3w_HQ_0khqdBCSn4C9EpV_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS</title><source>SIAM Journals Online</source><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>CARLINI, ELISABETTA ; SILVA, FRANCISCO J.</creator><creatorcontrib>CARLINI, ELISABETTA ; SILVA, FRANCISCO J.</creatorcontrib><description>In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/17M1143022</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2018-01, Vol.56 (4), p.2148-2177</ispartof><rights>Copyright ©2018 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-418f3f95c712d87d4ea71622a1357ff0842f5b68f3e28175f5a46fc5d8f68bae3</citedby><cites>FETCH-LOGICAL-c289t-418f3f95c712d87d4ea71622a1357ff0842f5b68f3e28175f5a46fc5d8f68bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45048455$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45048455$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>CARLINI, ELISABETTA</creatorcontrib><creatorcontrib>SILVA, FRANCISCO J.</creatorcontrib><title>ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS</title><title>SIAM journal on numerical analysis</title><description>In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpF0E1Pg0AQBuCN0USsXryb7NlkdWc_2OVI6LYlUBaBetADoZRNbDQ10Iv_vihGT5N588wcXoRugT4AcPUIag0gOGXsDHlAA0kUKHqOPEq5T0Cw4BJdDcOejrsG7qFXm-FqZfA8LqPCVPFLWMVjZBe4tGuDM5ulcWbCAi9skpiC5GmYRQlJbLq2S1vYZ2yeNj83JQ6zOQ7zPI2jKbhGF655H7qb3zlDm4WpohVJ7XI0KWmZDo5EgHbcBbJVwHZa7UTXKPAZa4BL5RzVgjm59UfUMQ1KOtkI37Vyp52vt03HZ-h--tv2h2HoO1d_9m8fTf9VA62_a6n_axnx3YT3w_HQ_0khqdBCSn4C9EpV_g</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>CARLINI, ELISABETTA</creator><creator>SILVA, FRANCISCO J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS</title><author>CARLINI, ELISABETTA ; SILVA, FRANCISCO J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-418f3f95c712d87d4ea71622a1357ff0842f5b68f3e28175f5a46fc5d8f68bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CARLINI, ELISABETTA</creatorcontrib><creatorcontrib>SILVA, FRANCISCO J.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CARLINI, ELISABETTA</au><au>SILVA, FRANCISCO J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>4</issue><spage>2148</spage><epage>2177</epage><pages>2148-2177</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/17M1143022</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2018-01, Vol.56 (4), p.2148-2177
issn 0036-1429
1095-7170
language eng
recordid cdi_crossref_primary_10_1137_17M1143022
source SIAM Journals Online; Jstor Complete Legacy; JSTOR Mathematics & Statistics
title ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20DISCRETIZATION%20OF%20SOME%20NONLINEAR%20FOKKER-PLANCK-KOLMOGOROV%20EQUATIONS%20AND%20APPLICATIONS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=CARLINI,%20ELISABETTA&rft.date=2018-01-01&rft.volume=56&rft.issue=4&rft.spage=2148&rft.epage=2177&rft.pages=2148-2177&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/17M1143022&rft_dat=%3Cjstor_cross%3E45048455%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45048455&rfr_iscdi=true