ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS
In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2018-01, Vol.56 (4), p.2148-2177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2177 |
---|---|
container_issue | 4 |
container_start_page | 2148 |
container_title | SIAM journal on numerical analysis |
container_volume | 56 |
creator | CARLINI, ELISABETTA SILVA, FRANCISCO J. |
description | In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics. |
doi_str_mv | 10.1137/17M1143022 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_17M1143022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45048455</jstor_id><sourcerecordid>45048455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-418f3f95c712d87d4ea71622a1357ff0842f5b68f3e28175f5a46fc5d8f68bae3</originalsourceid><addsrcrecordid>eNpF0E1Pg0AQBuCN0USsXryb7NlkdWc_2OVI6LYlUBaBetADoZRNbDQ10Iv_vihGT5N588wcXoRugT4AcPUIag0gOGXsDHlAA0kUKHqOPEq5T0Cw4BJdDcOejrsG7qFXm-FqZfA8LqPCVPFLWMVjZBe4tGuDM5ulcWbCAi9skpiC5GmYRQlJbLq2S1vYZ2yeNj83JQ6zOQ7zPI2jKbhGF655H7qb3zlDm4WpohVJ7XI0KWmZDo5EgHbcBbJVwHZa7UTXKPAZa4BL5RzVgjm59UfUMQ1KOtkI37Vyp52vt03HZ-h--tv2h2HoO1d_9m8fTf9VA62_a6n_axnx3YT3w_HQ_0khqdBCSn4C9EpV_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS</title><source>SIAM Journals Online</source><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>CARLINI, ELISABETTA ; SILVA, FRANCISCO J.</creator><creatorcontrib>CARLINI, ELISABETTA ; SILVA, FRANCISCO J.</creatorcontrib><description>In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/17M1143022</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2018-01, Vol.56 (4), p.2148-2177</ispartof><rights>Copyright ©2018 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-418f3f95c712d87d4ea71622a1357ff0842f5b68f3e28175f5a46fc5d8f68bae3</citedby><cites>FETCH-LOGICAL-c289t-418f3f95c712d87d4ea71622a1357ff0842f5b68f3e28175f5a46fc5d8f68bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45048455$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45048455$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>CARLINI, ELISABETTA</creatorcontrib><creatorcontrib>SILVA, FRANCISCO J.</creatorcontrib><title>ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS</title><title>SIAM journal on numerical analysis</title><description>In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpF0E1Pg0AQBuCN0USsXryb7NlkdWc_2OVI6LYlUBaBetADoZRNbDQ10Iv_vihGT5N588wcXoRugT4AcPUIag0gOGXsDHlAA0kUKHqOPEq5T0Cw4BJdDcOejrsG7qFXm-FqZfA8LqPCVPFLWMVjZBe4tGuDM5ulcWbCAi9skpiC5GmYRQlJbLq2S1vYZ2yeNj83JQ6zOQ7zPI2jKbhGF655H7qb3zlDm4WpohVJ7XI0KWmZDo5EgHbcBbJVwHZa7UTXKPAZa4BL5RzVgjm59UfUMQ1KOtkI37Vyp52vt03HZ-h--tv2h2HoO1d_9m8fTf9VA62_a6n_axnx3YT3w_HQ_0khqdBCSn4C9EpV_g</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>CARLINI, ELISABETTA</creator><creator>SILVA, FRANCISCO J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS</title><author>CARLINI, ELISABETTA ; SILVA, FRANCISCO J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-418f3f95c712d87d4ea71622a1357ff0842f5b68f3e28175f5a46fc5d8f68bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CARLINI, ELISABETTA</creatorcontrib><creatorcontrib>SILVA, FRANCISCO J.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CARLINI, ELISABETTA</au><au>SILVA, FRANCISCO J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>4</issue><spage>2148</spage><epage>2177</epage><pages>2148-2177</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/17M1143022</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2018-01, Vol.56 (4), p.2148-2177 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_crossref_primary_10_1137_17M1143022 |
source | SIAM Journals Online; Jstor Complete Legacy; JSTOR Mathematics & Statistics |
title | ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20DISCRETIZATION%20OF%20SOME%20NONLINEAR%20FOKKER-PLANCK-KOLMOGOROV%20EQUATIONS%20AND%20APPLICATIONS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=CARLINI,%20ELISABETTA&rft.date=2018-01-01&rft.volume=56&rft.issue=4&rft.spage=2148&rft.epage=2177&rft.pages=2148-2177&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/17M1143022&rft_dat=%3Cjstor_cross%3E45048455%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45048455&rfr_iscdi=true |