CONVERGENCE ANALYSIS OF A FINITE ELEMENT APPROXIMATION OF MINIMUM ACTION METHODS

In this work, we address the convergence of a finite element approximation of the minimizer of the Preidlin-Wentzell (F-W) action functional for nongradient dynamical systems perturbed by small noise. The F-W theory of large deviations is a rigorous mathematical tool to study small-noise-induced tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2018-01, Vol.56 (3), p.1597-1620
Hauptverfasser: WAN, XIAOLIANG, YU, HAIJUN, ZHAI, JIAYU
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1620
container_issue 3
container_start_page 1597
container_title SIAM journal on numerical analysis
container_volume 56
creator WAN, XIAOLIANG
YU, HAIJUN
ZHAI, JIAYU
description In this work, we address the convergence of a finite element approximation of the minimizer of the Preidlin-Wentzell (F-W) action functional for nongradient dynamical systems perturbed by small noise. The F-W theory of large deviations is a rigorous mathematical tool to study small-noise-induced transitions in a dynamical system. The central task in the application of F-W theory of large deviations is to seek the minimizer and minimum of the F-W action functional. We discretize the F-W action functional using linear finite elements and establish the convergence of the approximation through Γ-convergence.
doi_str_mv 10.1137/17M1141679
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_17M1141679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45048572</jstor_id><sourcerecordid>45048572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-5e88d6797ed797a7b2b18d3c9432f08e67b0d51e886e5dcc3f465f64afa5ffee3</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsFYv3oU9C9Gd7FdyXOKmXcgmoUlFTyEfu2BRKkkv_vemVvTyhvfmxzA8hG6BPABQ-QjSAjAQMj5DCyAxDyRIco4WhFARAAvjS3Q1TTsy-wjoApVJkT_rzUrnicYqV9lrZSpcpFjh1OSm1lhn2uq8xqosN8WLsao2RX4k7Ly3W4tV8pNYXa-Lp-oaXfj2fXI3v3OJtqmuk3WQFSuTqCzoQ04PAXdRNMxvSjfM0sou7CAaaB8zGnoSOSE7MnCYKeH40PfUM8G9YK1vuffO0SW6P93tx_00jc43n-PbRzt-NUCaYxfNfxczfHeCd9NhP_6RjBMWcRnSb3llU40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CONVERGENCE ANALYSIS OF A FINITE ELEMENT APPROXIMATION OF MINIMUM ACTION METHODS</title><source>Jstor Complete Legacy</source><source>SIAM journals (Society for Industrial and Applied Mathematics)</source><source>JSTOR</source><creator>WAN, XIAOLIANG ; YU, HAIJUN ; ZHAI, JIAYU</creator><creatorcontrib>WAN, XIAOLIANG ; YU, HAIJUN ; ZHAI, JIAYU</creatorcontrib><description>In this work, we address the convergence of a finite element approximation of the minimizer of the Preidlin-Wentzell (F-W) action functional for nongradient dynamical systems perturbed by small noise. The F-W theory of large deviations is a rigorous mathematical tool to study small-noise-induced transitions in a dynamical system. The central task in the application of F-W theory of large deviations is to seek the minimizer and minimum of the F-W action functional. We discretize the F-W action functional using linear finite elements and establish the convergence of the approximation through Γ-convergence.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/17M1141679</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2018-01, Vol.56 (3), p.1597-1620</ispartof><rights>Copyright ©2018 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-5e88d6797ed797a7b2b18d3c9432f08e67b0d51e886e5dcc3f465f64afa5ffee3</citedby><cites>FETCH-LOGICAL-c253t-5e88d6797ed797a7b2b18d3c9432f08e67b0d51e886e5dcc3f465f64afa5ffee3</cites><orcidid>0000-0002-7376-6205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45048572$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45048572$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>WAN, XIAOLIANG</creatorcontrib><creatorcontrib>YU, HAIJUN</creatorcontrib><creatorcontrib>ZHAI, JIAYU</creatorcontrib><title>CONVERGENCE ANALYSIS OF A FINITE ELEMENT APPROXIMATION OF MINIMUM ACTION METHODS</title><title>SIAM journal on numerical analysis</title><description>In this work, we address the convergence of a finite element approximation of the minimizer of the Preidlin-Wentzell (F-W) action functional for nongradient dynamical systems perturbed by small noise. The F-W theory of large deviations is a rigorous mathematical tool to study small-noise-induced transitions in a dynamical system. The central task in the application of F-W theory of large deviations is to seek the minimizer and minimum of the F-W action functional. We discretize the F-W action functional using linear finite elements and establish the convergence of the approximation through Γ-convergence.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AQxRdRsFYv3oU9C9Gd7FdyXOKmXcgmoUlFTyEfu2BRKkkv_vemVvTyhvfmxzA8hG6BPABQ-QjSAjAQMj5DCyAxDyRIco4WhFARAAvjS3Q1TTsy-wjoApVJkT_rzUrnicYqV9lrZSpcpFjh1OSm1lhn2uq8xqosN8WLsao2RX4k7Ly3W4tV8pNYXa-Lp-oaXfj2fXI3v3OJtqmuk3WQFSuTqCzoQ04PAXdRNMxvSjfM0sou7CAaaB8zGnoSOSE7MnCYKeH40PfUM8G9YK1vuffO0SW6P93tx_00jc43n-PbRzt-NUCaYxfNfxczfHeCd9NhP_6RjBMWcRnSb3llU40</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>WAN, XIAOLIANG</creator><creator>YU, HAIJUN</creator><creator>ZHAI, JIAYU</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7376-6205</orcidid></search><sort><creationdate>20180101</creationdate><title>CONVERGENCE ANALYSIS OF A FINITE ELEMENT APPROXIMATION OF MINIMUM ACTION METHODS</title><author>WAN, XIAOLIANG ; YU, HAIJUN ; ZHAI, JIAYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-5e88d6797ed797a7b2b18d3c9432f08e67b0d51e886e5dcc3f465f64afa5ffee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WAN, XIAOLIANG</creatorcontrib><creatorcontrib>YU, HAIJUN</creatorcontrib><creatorcontrib>ZHAI, JIAYU</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WAN, XIAOLIANG</au><au>YU, HAIJUN</au><au>ZHAI, JIAYU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONVERGENCE ANALYSIS OF A FINITE ELEMENT APPROXIMATION OF MINIMUM ACTION METHODS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>3</issue><spage>1597</spage><epage>1620</epage><pages>1597-1620</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>In this work, we address the convergence of a finite element approximation of the minimizer of the Preidlin-Wentzell (F-W) action functional for nongradient dynamical systems perturbed by small noise. The F-W theory of large deviations is a rigorous mathematical tool to study small-noise-induced transitions in a dynamical system. The central task in the application of F-W theory of large deviations is to seek the minimizer and minimum of the F-W action functional. We discretize the F-W action functional using linear finite elements and establish the convergence of the approximation through Γ-convergence.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/17M1141679</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-7376-6205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2018-01, Vol.56 (3), p.1597-1620
issn 0036-1429
1095-7170
language eng
recordid cdi_crossref_primary_10_1137_17M1141679
source Jstor Complete Legacy; SIAM journals (Society for Industrial and Applied Mathematics); JSTOR
title CONVERGENCE ANALYSIS OF A FINITE ELEMENT APPROXIMATION OF MINIMUM ACTION METHODS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONVERGENCE%20ANALYSIS%20OF%20A%20FINITE%20ELEMENT%20APPROXIMATION%20OF%20MINIMUM%20ACTION%20METHODS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=WAN,%20XIAOLIANG&rft.date=2018-01-01&rft.volume=56&rft.issue=3&rft.spage=1597&rft.epage=1620&rft.pages=1597-1620&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/17M1141679&rft_dat=%3Cjstor_cross%3E45048572%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45048572&rfr_iscdi=true