The Nonnegative Rank of a Matrix: Hard Problems, Easy Solutions
Using elementary linear algebra, we develop a technique that leads to solutions of two widely known problems on nonnegative matrices. First, we give a short proof of the result by Vavasis stating that the nonnegative rank of a matrix is NP-hard to compute. This proof is essentially contained in the...
Gespeichert in:
Veröffentlicht in: | SIAM review 2017-12, Vol.59 (4), p.794-800 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 4 |
container_start_page | 794 |
container_title | SIAM review |
container_volume | 59 |
creator | Shitov, Yaroslav |
description | Using elementary linear algebra, we develop a technique that leads to solutions of two widely known problems on nonnegative matrices. First, we give a short proof of the result by Vavasis stating that the nonnegative rank of a matrix is NP-hard to compute. This proof is essentially contained in the paper by Jiang and Ravikumar, who discussed this topic in different terms fifteen years before the work of Vavasis. Second, we present a solution of the Cohen-Rothblum problem on rational nonnegative factorizations, which was posed in 1993 and remained open until now. |
doi_str_mv | 10.1137/16M1080999 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_16M1080999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45109253</jstor_id><sourcerecordid>45109253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-a861f1d646d3ace7d2865996d5f1a9f7091aa20af282b762a1df1f52220753713</originalsourceid><addsrcrecordid>eNpFkEFLAzEUhIMoWKsX70LO4up7ySbZeBEp1Qqtitbz8tpNdGu7kWQr9t-7UtHTMPAxzAxjxwjniNJcoJ4gFGCt3WE9BKsyIwB2WQ9A6gzzXO2zg5QW0PlC2h67mr45fh-axr1SW386_kTNOw-eE59QG-uvSz6iWPHHGGZLt0pnfEhpw5_Dct3WoUmHbM_TMrmjX-2zl5vhdDDKxg-3d4PrcTYXSrYZFRo9VjrXlaS5M5UotLJWV8ojWW_AIpEA8qIQM6MFYeXRKyEEGCUNyj473ebOY0gpOl9-xHpFcVMilD_Ty__pHXyyhRepDfGPzFX3SFdHfgMYslLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Nonnegative Rank of a Matrix: Hard Problems, Easy Solutions</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR Mathematics & Statistics</source><creator>Shitov, Yaroslav</creator><creatorcontrib>Shitov, Yaroslav</creatorcontrib><description>Using elementary linear algebra, we develop a technique that leads to solutions of two widely known problems on nonnegative matrices. First, we give a short proof of the result by Vavasis stating that the nonnegative rank of a matrix is NP-hard to compute. This proof is essentially contained in the paper by Jiang and Ravikumar, who discussed this topic in different terms fifteen years before the work of Vavasis. Second, we present a solution of the Cohen-Rothblum problem on rational nonnegative factorizations, which was posed in 1993 and remained open until now.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/16M1080999</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>RESEARCH SPOTLIGHTS</subject><ispartof>SIAM review, 2017-12, Vol.59 (4), p.794-800</ispartof><rights>Copyright ©2017 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-a861f1d646d3ace7d2865996d5f1a9f7091aa20af282b762a1df1f52220753713</citedby><cites>FETCH-LOGICAL-c253t-a861f1d646d3ace7d2865996d5f1a9f7091aa20af282b762a1df1f52220753713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45109253$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45109253$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Shitov, Yaroslav</creatorcontrib><title>The Nonnegative Rank of a Matrix: Hard Problems, Easy Solutions</title><title>SIAM review</title><description>Using elementary linear algebra, we develop a technique that leads to solutions of two widely known problems on nonnegative matrices. First, we give a short proof of the result by Vavasis stating that the nonnegative rank of a matrix is NP-hard to compute. This proof is essentially contained in the paper by Jiang and Ravikumar, who discussed this topic in different terms fifteen years before the work of Vavasis. Second, we present a solution of the Cohen-Rothblum problem on rational nonnegative factorizations, which was posed in 1993 and remained open until now.</description><subject>RESEARCH SPOTLIGHTS</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEUhIMoWKsX70LO4up7ySbZeBEp1Qqtitbz8tpNdGu7kWQr9t-7UtHTMPAxzAxjxwjniNJcoJ4gFGCt3WE9BKsyIwB2WQ9A6gzzXO2zg5QW0PlC2h67mr45fh-axr1SW386_kTNOw-eE59QG-uvSz6iWPHHGGZLt0pnfEhpw5_Dct3WoUmHbM_TMrmjX-2zl5vhdDDKxg-3d4PrcTYXSrYZFRo9VjrXlaS5M5UotLJWV8ojWW_AIpEA8qIQM6MFYeXRKyEEGCUNyj473ebOY0gpOl9-xHpFcVMilD_Ty__pHXyyhRepDfGPzFX3SFdHfgMYslLQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Shitov, Yaroslav</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>The Nonnegative Rank of a Matrix: Hard Problems, Easy Solutions</title><author>Shitov, Yaroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-a861f1d646d3ace7d2865996d5f1a9f7091aa20af282b762a1df1f52220753713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>RESEARCH SPOTLIGHTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shitov, Yaroslav</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shitov, Yaroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Nonnegative Rank of a Matrix: Hard Problems, Easy Solutions</atitle><jtitle>SIAM review</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>59</volume><issue>4</issue><spage>794</spage><epage>800</epage><pages>794-800</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><abstract>Using elementary linear algebra, we develop a technique that leads to solutions of two widely known problems on nonnegative matrices. First, we give a short proof of the result by Vavasis stating that the nonnegative rank of a matrix is NP-hard to compute. This proof is essentially contained in the paper by Jiang and Ravikumar, who discussed this topic in different terms fifteen years before the work of Vavasis. Second, we present a solution of the Cohen-Rothblum problem on rational nonnegative factorizations, which was posed in 1993 and remained open until now.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/16M1080999</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1445 |
ispartof | SIAM review, 2017-12, Vol.59 (4), p.794-800 |
issn | 0036-1445 1095-7200 |
language | eng |
recordid | cdi_crossref_primary_10_1137_16M1080999 |
source | Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; JSTOR Mathematics & Statistics |
subjects | RESEARCH SPOTLIGHTS |
title | The Nonnegative Rank of a Matrix: Hard Problems, Easy Solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Nonnegative%20Rank%20of%20a%20Matrix:%20Hard%20Problems,%20Easy%20Solutions&rft.jtitle=SIAM%20review&rft.au=Shitov,%20Yaroslav&rft.date=2017-12-01&rft.volume=59&rft.issue=4&rft.spage=794&rft.epage=800&rft.pages=794-800&rft.issn=0036-1445&rft.eissn=1095-7200&rft_id=info:doi/10.1137/16M1080999&rft_dat=%3Cjstor_cross%3E45109253%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45109253&rfr_iscdi=true |