On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows
The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce th...
Gespeichert in:
Veröffentlicht in: | SIAM review 2017, Vol.59 (3), p.492-544 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 544 |
---|---|
container_issue | 3 |
container_start_page | 492 |
container_title | SIAM review |
container_volume | 59 |
creator | John, Volker Linke, Alexander Merdon, Christian Neilan, Michael Rebholz, Leo G. |
description | The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This article reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using nonrobust discretizations and the improvements obtained by utilizing pressure-robust discretizations. |
doi_str_mv | 10.1137/15m1047696 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_15M1047696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45109229</jstor_id><sourcerecordid>45109229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-d8b53c778f66c212ad2a7870dc585339ec7579c515a0264f37f50c2b429356c33</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKcX70LOQjUffZP2KHPVwcYu7ly69K3LaJORBD_--1U2PD08Dz-ew4-Qe86eOJf6mcPAWa5VqS7IhLMSMi0YuyQTxqTKeJ7DNbmJcc_GXshyQjZrR9MO6av9wvCJziCdeRdTaKxL1Dq6sj_Y0so6m5DOexxw3FeYdr6NtPOBLpzxwyFgjHbbI616_x1vyVXX9BHvzjklm2r-MXvPluu3xexlmRmpWMraYgvSaF10ShnBRdOKRheatQYKkLJEo0GXBjg0TKi8k7oDZsQ2F6UEZaScksfTrwk-xoBdfQh2aMJvzVn9J6TmsDoLGeGHE7yPyYd_MofRkxgfj7wfW4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows</title><source>Jstor Complete Legacy</source><source>SIAM Journals Archive</source><source>JSTOR Mathematics and Statistics</source><creator>John, Volker ; Linke, Alexander ; Merdon, Christian ; Neilan, Michael ; Rebholz, Leo G.</creator><creatorcontrib>John, Volker ; Linke, Alexander ; Merdon, Christian ; Neilan, Michael ; Rebholz, Leo G.</creatorcontrib><description>The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This article reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using nonrobust discretizations and the improvements obtained by utilizing pressure-robust discretizations.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/15m1047696</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>SURVEY and REVIEW</subject><ispartof>SIAM review, 2017, Vol.59 (3), p.492-544</ispartof><rights>Copyright ©2017 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-d8b53c778f66c212ad2a7870dc585339ec7579c515a0264f37f50c2b429356c33</citedby><cites>FETCH-LOGICAL-c360t-d8b53c778f66c212ad2a7870dc585339ec7579c515a0264f37f50c2b429356c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45109229$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45109229$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,4010,27902,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>John, Volker</creatorcontrib><creatorcontrib>Linke, Alexander</creatorcontrib><creatorcontrib>Merdon, Christian</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><creatorcontrib>Rebholz, Leo G.</creatorcontrib><title>On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows</title><title>SIAM review</title><description>The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This article reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using nonrobust discretizations and the improvements obtained by utilizing pressure-robust discretizations.</description><subject>SURVEY and REVIEW</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAYxoMoOKcX70LOQjUffZP2KHPVwcYu7ly69K3LaJORBD_--1U2PD08Dz-ew4-Qe86eOJf6mcPAWa5VqS7IhLMSMi0YuyQTxqTKeJ7DNbmJcc_GXshyQjZrR9MO6av9wvCJziCdeRdTaKxL1Dq6sj_Y0so6m5DOexxw3FeYdr6NtPOBLpzxwyFgjHbbI616_x1vyVXX9BHvzjklm2r-MXvPluu3xexlmRmpWMraYgvSaF10ShnBRdOKRheatQYKkLJEo0GXBjg0TKi8k7oDZsQ2F6UEZaScksfTrwk-xoBdfQh2aMJvzVn9J6TmsDoLGeGHE7yPyYd_MofRkxgfj7wfW4w</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>John, Volker</creator><creator>Linke, Alexander</creator><creator>Merdon, Christian</creator><creator>Neilan, Michael</creator><creator>Rebholz, Leo G.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows</title><author>John, Volker ; Linke, Alexander ; Merdon, Christian ; Neilan, Michael ; Rebholz, Leo G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-d8b53c778f66c212ad2a7870dc585339ec7579c515a0264f37f50c2b429356c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>SURVEY and REVIEW</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, Volker</creatorcontrib><creatorcontrib>Linke, Alexander</creatorcontrib><creatorcontrib>Merdon, Christian</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><creatorcontrib>Rebholz, Leo G.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, Volker</au><au>Linke, Alexander</au><au>Merdon, Christian</au><au>Neilan, Michael</au><au>Rebholz, Leo G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows</atitle><jtitle>SIAM review</jtitle><date>2017</date><risdate>2017</risdate><volume>59</volume><issue>3</issue><spage>492</spage><epage>544</epage><pages>492-544</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><abstract>The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This article reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using nonrobust discretizations and the improvements obtained by utilizing pressure-robust discretizations.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/15m1047696</doi><tpages>53</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1445 |
ispartof | SIAM review, 2017, Vol.59 (3), p.492-544 |
issn | 0036-1445 1095-7200 |
language | eng |
recordid | cdi_crossref_primary_10_1137_15M1047696 |
source | Jstor Complete Legacy; SIAM Journals Archive; JSTOR Mathematics and Statistics |
subjects | SURVEY and REVIEW |
title | On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Divergence%20Constraint%20in%20Mixed%20Finite%20Element%20Methods%20for%20Incompressible%20Flows&rft.jtitle=SIAM%20review&rft.au=John,%20Volker&rft.date=2017&rft.volume=59&rft.issue=3&rft.spage=492&rft.epage=544&rft.pages=492-544&rft.issn=0036-1445&rft.eissn=1095-7200&rft_id=info:doi/10.1137/15m1047696&rft_dat=%3Cjstor_cross%3E45109229%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45109229&rfr_iscdi=true |