On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows

The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 2017, Vol.59 (3), p.492-544
Hauptverfasser: John, Volker, Linke, Alexander, Merdon, Christian, Neilan, Michael, Rebholz, Leo G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 544
container_issue 3
container_start_page 492
container_title SIAM review
container_volume 59
creator John, Volker
Linke, Alexander
Merdon, Christian
Neilan, Michael
Rebholz, Leo G.
description The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This article reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using nonrobust discretizations and the improvements obtained by utilizing pressure-robust discretizations.
doi_str_mv 10.1137/15m1047696
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_15M1047696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45109229</jstor_id><sourcerecordid>45109229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-d8b53c778f66c212ad2a7870dc585339ec7579c515a0264f37f50c2b429356c33</originalsourceid><addsrcrecordid>eNo9kM1LwzAYxoMoOKcX70LOQjUffZP2KHPVwcYu7ly69K3LaJORBD_--1U2PD08Dz-ew4-Qe86eOJf6mcPAWa5VqS7IhLMSMi0YuyQTxqTKeJ7DNbmJcc_GXshyQjZrR9MO6av9wvCJziCdeRdTaKxL1Dq6sj_Y0so6m5DOexxw3FeYdr6NtPOBLpzxwyFgjHbbI616_x1vyVXX9BHvzjklm2r-MXvPluu3xexlmRmpWMraYgvSaF10ShnBRdOKRheatQYKkLJEo0GXBjg0TKi8k7oDZsQ2F6UEZaScksfTrwk-xoBdfQh2aMJvzVn9J6TmsDoLGeGHE7yPyYd_MofRkxgfj7wfW4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows</title><source>Jstor Complete Legacy</source><source>SIAM Journals Archive</source><source>JSTOR Mathematics and Statistics</source><creator>John, Volker ; Linke, Alexander ; Merdon, Christian ; Neilan, Michael ; Rebholz, Leo G.</creator><creatorcontrib>John, Volker ; Linke, Alexander ; Merdon, Christian ; Neilan, Michael ; Rebholz, Leo G.</creatorcontrib><description>The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This article reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using nonrobust discretizations and the improvements obtained by utilizing pressure-robust discretizations.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/15m1047696</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>SURVEY and REVIEW</subject><ispartof>SIAM review, 2017, Vol.59 (3), p.492-544</ispartof><rights>Copyright ©2017 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-d8b53c778f66c212ad2a7870dc585339ec7579c515a0264f37f50c2b429356c33</citedby><cites>FETCH-LOGICAL-c360t-d8b53c778f66c212ad2a7870dc585339ec7579c515a0264f37f50c2b429356c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45109229$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45109229$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,4010,27902,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>John, Volker</creatorcontrib><creatorcontrib>Linke, Alexander</creatorcontrib><creatorcontrib>Merdon, Christian</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><creatorcontrib>Rebholz, Leo G.</creatorcontrib><title>On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows</title><title>SIAM review</title><description>The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This article reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using nonrobust discretizations and the improvements obtained by utilizing pressure-robust discretizations.</description><subject>SURVEY and REVIEW</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LwzAYxoMoOKcX70LOQjUffZP2KHPVwcYu7ly69K3LaJORBD_--1U2PD08Dz-ew4-Qe86eOJf6mcPAWa5VqS7IhLMSMi0YuyQTxqTKeJ7DNbmJcc_GXshyQjZrR9MO6av9wvCJziCdeRdTaKxL1Dq6sj_Y0so6m5DOexxw3FeYdr6NtPOBLpzxwyFgjHbbI616_x1vyVXX9BHvzjklm2r-MXvPluu3xexlmRmpWMraYgvSaF10ShnBRdOKRheatQYKkLJEo0GXBjg0TKi8k7oDZsQ2F6UEZaScksfTrwk-xoBdfQh2aMJvzVn9J6TmsDoLGeGHE7yPyYd_MofRkxgfj7wfW4w</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>John, Volker</creator><creator>Linke, Alexander</creator><creator>Merdon, Christian</creator><creator>Neilan, Michael</creator><creator>Rebholz, Leo G.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows</title><author>John, Volker ; Linke, Alexander ; Merdon, Christian ; Neilan, Michael ; Rebholz, Leo G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-d8b53c778f66c212ad2a7870dc585339ec7579c515a0264f37f50c2b429356c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>SURVEY and REVIEW</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, Volker</creatorcontrib><creatorcontrib>Linke, Alexander</creatorcontrib><creatorcontrib>Merdon, Christian</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><creatorcontrib>Rebholz, Leo G.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, Volker</au><au>Linke, Alexander</au><au>Merdon, Christian</au><au>Neilan, Michael</au><au>Rebholz, Leo G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows</atitle><jtitle>SIAM review</jtitle><date>2017</date><risdate>2017</risdate><volume>59</volume><issue>3</issue><spage>492</spage><epage>544</epage><pages>492-544</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><abstract>The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which influences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This article reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using nonrobust discretizations and the improvements obtained by utilizing pressure-robust discretizations.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/15m1047696</doi><tpages>53</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 2017, Vol.59 (3), p.492-544
issn 0036-1445
1095-7200
language eng
recordid cdi_crossref_primary_10_1137_15M1047696
source Jstor Complete Legacy; SIAM Journals Archive; JSTOR Mathematics and Statistics
subjects SURVEY and REVIEW
title On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Divergence%20Constraint%20in%20Mixed%20Finite%20Element%20Methods%20for%20Incompressible%20Flows&rft.jtitle=SIAM%20review&rft.au=John,%20Volker&rft.date=2017&rft.volume=59&rft.issue=3&rft.spage=492&rft.epage=544&rft.pages=492-544&rft.issn=0036-1445&rft.eissn=1095-7200&rft_id=info:doi/10.1137/15m1047696&rft_dat=%3Cjstor_cross%3E45109229%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45109229&rfr_iscdi=true