A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD
In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of t...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 2017-01, Vol.77 (1), p.181-201 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1 |
container_start_page | 181 |
container_title | SIAM journal on applied mathematics |
container_volume | 77 |
creator | WANG, XIUNAN ZHAO, XIAO-QIANG |
description | In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of the model, that is, the disease-free periodic solution is globally attractive if R0 ≤ 1, and the system admits a unique positive periodic solution which is globally attractive if R0 > 1. Numerically, we study the malaria transmission case in Maputo Province, Mozambique. Our numerical simulation results are consistent with the obtained analytic results. In addition, we observe that prolonging the length of the EIP is helpful for the control of the disease. |
doi_str_mv | 10.1137/15M1046277 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_15M1046277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26166437</jstor_id><sourcerecordid>26166437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-d45244d9fe2b4df6e41464729ef60329dd2c8eb248f88c851ffe08792da1ae743</originalsourceid><addsrcrecordid>eNpFj81LwzAchoMoOKcX70LOQjS_JM0HnrKuukC7Su3UW-maBBzKpNnF_15lQ0_v5XkfeBC6BHoDwNUtZBVQIZlSR2gC1GREAXs9RhNKuSTAjTlFZyltKAWQwkzQncWPRePqucvxc5G3dUNmzj7hypa2cRZX9bwo8YtrF9gt89XMtq5eHi7n6CT27ylcHHaKVvdFmy9IWT-43JZkYBnfES8yJoQ3MbC18FEGAUIKxUyIknJmvGeDDmsmdNR60BnEGKhWhvke-qAEn6LrvXcYtymNIXaf49tHP351QLvf7O4_-we-2sObtNuOfySTIKXgin8DqidNAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR Mathematics & Statistics</source><creator>WANG, XIUNAN ; ZHAO, XIAO-QIANG</creator><creatorcontrib>WANG, XIUNAN ; ZHAO, XIAO-QIANG</creatorcontrib><description>In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of the model, that is, the disease-free periodic solution is globally attractive if R0 ≤ 1, and the system admits a unique positive periodic solution which is globally attractive if R0 > 1. Numerically, we study the malaria transmission case in Maputo Province, Mozambique. Our numerical simulation results are consistent with the obtained analytic results. In addition, we observe that prolonging the length of the EIP is helpful for the control of the disease.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/15M1046277</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on applied mathematics, 2017-01, Vol.77 (1), p.181-201</ispartof><rights>Copyright ©2017 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-d45244d9fe2b4df6e41464729ef60329dd2c8eb248f88c851ffe08792da1ae743</citedby><cites>FETCH-LOGICAL-c253t-d45244d9fe2b4df6e41464729ef60329dd2c8eb248f88c851ffe08792da1ae743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26166437$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26166437$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>WANG, XIUNAN</creatorcontrib><creatorcontrib>ZHAO, XIAO-QIANG</creatorcontrib><title>A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD</title><title>SIAM journal on applied mathematics</title><description>In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of the model, that is, the disease-free periodic solution is globally attractive if R0 ≤ 1, and the system admits a unique positive periodic solution which is globally attractive if R0 > 1. Numerically, we study the malaria transmission case in Maputo Province, Mozambique. Our numerical simulation results are consistent with the obtained analytic results. In addition, we observe that prolonging the length of the EIP is helpful for the control of the disease.</description><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFj81LwzAchoMoOKcX70LOQjS_JM0HnrKuukC7Su3UW-maBBzKpNnF_15lQ0_v5XkfeBC6BHoDwNUtZBVQIZlSR2gC1GREAXs9RhNKuSTAjTlFZyltKAWQwkzQncWPRePqucvxc5G3dUNmzj7hypa2cRZX9bwo8YtrF9gt89XMtq5eHi7n6CT27ylcHHaKVvdFmy9IWT-43JZkYBnfES8yJoQ3MbC18FEGAUIKxUyIknJmvGeDDmsmdNR60BnEGKhWhvke-qAEn6LrvXcYtymNIXaf49tHP351QLvf7O4_-we-2sObtNuOfySTIKXgin8DqidNAA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>WANG, XIUNAN</creator><creator>ZHAO, XIAO-QIANG</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170101</creationdate><title>A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD</title><author>WANG, XIUNAN ; ZHAO, XIAO-QIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-d45244d9fe2b4df6e41464729ef60329dd2c8eb248f88c851ffe08792da1ae743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, XIUNAN</creatorcontrib><creatorcontrib>ZHAO, XIAO-QIANG</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, XIUNAN</au><au>ZHAO, XIAO-QIANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>77</volume><issue>1</issue><spage>181</spage><epage>201</epage><pages>181-201</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of the model, that is, the disease-free periodic solution is globally attractive if R0 ≤ 1, and the system admits a unique positive periodic solution which is globally attractive if R0 > 1. Numerically, we study the malaria transmission case in Maputo Province, Mozambique. Our numerical simulation results are consistent with the obtained analytic results. In addition, we observe that prolonging the length of the EIP is helpful for the control of the disease.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/15M1046277</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2017-01, Vol.77 (1), p.181-201 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_crossref_primary_10_1137_15M1046277 |
source | Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; JSTOR Mathematics & Statistics |
title | A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PERIODIC%20VECTOR-BIAS%20MALARIA%20MODEL%20WITH%20INCUBATION%20PERIOD&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=WANG,%20XIUNAN&rft.date=2017-01-01&rft.volume=77&rft.issue=1&rft.spage=181&rft.epage=201&rft.pages=181-201&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/15M1046277&rft_dat=%3Cjstor_cross%3E26166437%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26166437&rfr_iscdi=true |