A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD

In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 2017-01, Vol.77 (1), p.181-201
Hauptverfasser: WANG, XIUNAN, ZHAO, XIAO-QIANG
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 181
container_title SIAM journal on applied mathematics
container_volume 77
creator WANG, XIUNAN
ZHAO, XIAO-QIANG
description In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of the model, that is, the disease-free periodic solution is globally attractive if R0 ≤ 1, and the system admits a unique positive periodic solution which is globally attractive if R0 > 1. Numerically, we study the malaria transmission case in Maputo Province, Mozambique. Our numerical simulation results are consistent with the obtained analytic results. In addition, we observe that prolonging the length of the EIP is helpful for the control of the disease.
doi_str_mv 10.1137/15M1046277
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_15M1046277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26166437</jstor_id><sourcerecordid>26166437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-d45244d9fe2b4df6e41464729ef60329dd2c8eb248f88c851ffe08792da1ae743</originalsourceid><addsrcrecordid>eNpFj81LwzAchoMoOKcX70LOQjS_JM0HnrKuukC7Su3UW-maBBzKpNnF_15lQ0_v5XkfeBC6BHoDwNUtZBVQIZlSR2gC1GREAXs9RhNKuSTAjTlFZyltKAWQwkzQncWPRePqucvxc5G3dUNmzj7hypa2cRZX9bwo8YtrF9gt89XMtq5eHi7n6CT27ylcHHaKVvdFmy9IWT-43JZkYBnfES8yJoQ3MbC18FEGAUIKxUyIknJmvGeDDmsmdNR60BnEGKhWhvke-qAEn6LrvXcYtymNIXaf49tHP351QLvf7O4_-we-2sObtNuOfySTIKXgin8DqidNAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR Mathematics &amp; Statistics</source><creator>WANG, XIUNAN ; ZHAO, XIAO-QIANG</creator><creatorcontrib>WANG, XIUNAN ; ZHAO, XIAO-QIANG</creatorcontrib><description>In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of the model, that is, the disease-free periodic solution is globally attractive if R0 ≤ 1, and the system admits a unique positive periodic solution which is globally attractive if R0 &gt; 1. Numerically, we study the malaria transmission case in Maputo Province, Mozambique. Our numerical simulation results are consistent with the obtained analytic results. In addition, we observe that prolonging the length of the EIP is helpful for the control of the disease.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/15M1046277</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on applied mathematics, 2017-01, Vol.77 (1), p.181-201</ispartof><rights>Copyright ©2017 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-d45244d9fe2b4df6e41464729ef60329dd2c8eb248f88c851ffe08792da1ae743</citedby><cites>FETCH-LOGICAL-c253t-d45244d9fe2b4df6e41464729ef60329dd2c8eb248f88c851ffe08792da1ae743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26166437$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26166437$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>WANG, XIUNAN</creatorcontrib><creatorcontrib>ZHAO, XIAO-QIANG</creatorcontrib><title>A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD</title><title>SIAM journal on applied mathematics</title><description>In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of the model, that is, the disease-free periodic solution is globally attractive if R0 ≤ 1, and the system admits a unique positive periodic solution which is globally attractive if R0 &gt; 1. Numerically, we study the malaria transmission case in Maputo Province, Mozambique. Our numerical simulation results are consistent with the obtained analytic results. In addition, we observe that prolonging the length of the EIP is helpful for the control of the disease.</description><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFj81LwzAchoMoOKcX70LOQjS_JM0HnrKuukC7Su3UW-maBBzKpNnF_15lQ0_v5XkfeBC6BHoDwNUtZBVQIZlSR2gC1GREAXs9RhNKuSTAjTlFZyltKAWQwkzQncWPRePqucvxc5G3dUNmzj7hypa2cRZX9bwo8YtrF9gt89XMtq5eHi7n6CT27ylcHHaKVvdFmy9IWT-43JZkYBnfES8yJoQ3MbC18FEGAUIKxUyIknJmvGeDDmsmdNR60BnEGKhWhvke-qAEn6LrvXcYtymNIXaf49tHP351QLvf7O4_-we-2sObtNuOfySTIKXgin8DqidNAA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>WANG, XIUNAN</creator><creator>ZHAO, XIAO-QIANG</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170101</creationdate><title>A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD</title><author>WANG, XIUNAN ; ZHAO, XIAO-QIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-d45244d9fe2b4df6e41464729ef60329dd2c8eb248f88c851ffe08792da1ae743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, XIUNAN</creatorcontrib><creatorcontrib>ZHAO, XIAO-QIANG</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, XIUNAN</au><au>ZHAO, XIAO-QIANG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>77</volume><issue>1</issue><spage>181</spage><epage>201</epage><pages>181-201</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>In this paper, we propose a malaria model which takes into account the climate factors, the extrinsic incubation period (EIP), and the vector-bias effect. We first introduce the basic reproduction ratio R0 and then prove that R0 serves as a threshold parameter in determining the global dynamics of the model, that is, the disease-free periodic solution is globally attractive if R0 ≤ 1, and the system admits a unique positive periodic solution which is globally attractive if R0 &gt; 1. Numerically, we study the malaria transmission case in Maputo Province, Mozambique. Our numerical simulation results are consistent with the obtained analytic results. In addition, we observe that prolonging the length of the EIP is helpful for the control of the disease.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/15M1046277</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 2017-01, Vol.77 (1), p.181-201
issn 0036-1399
1095-712X
language eng
recordid cdi_crossref_primary_10_1137_15M1046277
source Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; JSTOR Mathematics & Statistics
title A PERIODIC VECTOR-BIAS MALARIA MODEL WITH INCUBATION PERIOD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PERIODIC%20VECTOR-BIAS%20MALARIA%20MODEL%20WITH%20INCUBATION%20PERIOD&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=WANG,%20XIUNAN&rft.date=2017-01-01&rft.volume=77&rft.issue=1&rft.spage=181&rft.epage=201&rft.pages=181-201&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/15M1046277&rft_dat=%3Cjstor_cross%3E26166437%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26166437&rfr_iscdi=true