A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES
A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotat...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2016-01, Vol.54 (4), p.2323-2358 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2358 |
---|---|
container_issue | 4 |
container_start_page | 2323 |
container_title | SIAM journal on numerical analysis |
container_volume | 54 |
creator | BÄNSCH, E. BRENNER, A. |
description | A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results. |
doi_str_mv | 10.1137/15M102753X |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_15M102753X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44018123</jstor_id><sourcerecordid>44018123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-3405ba2921432e41f863e0e3de47d72bb1ddc82ae3700c9371bad1c21afd0d983</originalsourceid><addsrcrecordid>eNpFj0FLwzAYhoMoWKcX70LPQvT78qVLA15KyVxhtSPpwFtpmxQcyqTdxX9vZaKnlwceXngYu0V4QCT1iEmJIFRCr2csQtAJV6jgnEUAtOQohb5kV9O0h5lTpIg9ZfG2crWxRWWL2Fhb2di4uiiz2rh4NdPWGud21vC8stbkdVG9xC5fm9K4a3YxtO9TuPndBdutTJ2v-aZ6LvJsw3uR6iMnCUnXCi1QkggSh3RJAQL5IJVXouvQ-z4VbSAF0GtS2LUee4Ht4MHrlBbs_vTbj4dpGsPQfI5vH-341SA0P93Nf_cs353k_XQ8jH-mlIApCqJvb1RN8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics and Statistics</source><source>SIAM Journals</source><creator>BÄNSCH, E. ; BRENNER, A.</creator><creatorcontrib>BÄNSCH, E. ; BRENNER, A.</creatorcontrib><description>A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/15M102753X</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2016-01, Vol.54 (4), p.2323-2358</ispartof><rights>Copyright ©2016 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-3405ba2921432e41f863e0e3de47d72bb1ddc82ae3700c9371bad1c21afd0d983</citedby><cites>FETCH-LOGICAL-c289t-3405ba2921432e41f863e0e3de47d72bb1ddc82ae3700c9371bad1c21afd0d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44018123$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44018123$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>BÄNSCH, E.</creatorcontrib><creatorcontrib>BRENNER, A.</creatorcontrib><title>A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES</title><title>SIAM journal on numerical analysis</title><description>A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFj0FLwzAYhoMoWKcX70LPQvT78qVLA15KyVxhtSPpwFtpmxQcyqTdxX9vZaKnlwceXngYu0V4QCT1iEmJIFRCr2csQtAJV6jgnEUAtOQohb5kV9O0h5lTpIg9ZfG2crWxRWWL2Fhb2di4uiiz2rh4NdPWGud21vC8stbkdVG9xC5fm9K4a3YxtO9TuPndBdutTJ2v-aZ6LvJsw3uR6iMnCUnXCi1QkggSh3RJAQL5IJVXouvQ-z4VbSAF0GtS2LUee4Ht4MHrlBbs_vTbj4dpGsPQfI5vH-341SA0P93Nf_cs353k_XQ8jH-mlIApCqJvb1RN8w</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>BÄNSCH, E.</creator><creator>BRENNER, A.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES</title><author>BÄNSCH, E. ; BRENNER, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-3405ba2921432e41f863e0e3de47d72bb1ddc82ae3700c9371bad1c21afd0d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BÄNSCH, E.</creatorcontrib><creatorcontrib>BRENNER, A.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BÄNSCH, E.</au><au>BRENNER, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>54</volume><issue>4</issue><spage>2323</spage><epage>2358</epage><pages>2323-2358</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/15M102753X</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2016-01, Vol.54 (4), p.2323-2358 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_crossref_primary_10_1137_15M102753X |
source | Jstor Complete Legacy; JSTOR Mathematics and Statistics; SIAM Journals |
title | A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20POSTERIORI%20ERROR%20ESTIMATES%20FOR%20PRESSURE-CORRECTION%20SCHEMES&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=B%C3%84NSCH,%20E.&rft.date=2016-01-01&rft.volume=54&rft.issue=4&rft.spage=2323&rft.epage=2358&rft.pages=2323-2358&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/15M102753X&rft_dat=%3Cjstor_cross%3E44018123%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44018123&rfr_iscdi=true |