A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES

A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2016-01, Vol.54 (4), p.2323-2358
Hauptverfasser: BÄNSCH, E., BRENNER, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2358
container_issue 4
container_start_page 2323
container_title SIAM journal on numerical analysis
container_volume 54
creator BÄNSCH, E.
BRENNER, A.
description A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results.
doi_str_mv 10.1137/15M102753X
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_15M102753X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44018123</jstor_id><sourcerecordid>44018123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-3405ba2921432e41f863e0e3de47d72bb1ddc82ae3700c9371bad1c21afd0d983</originalsourceid><addsrcrecordid>eNpFj0FLwzAYhoMoWKcX70LPQvT78qVLA15KyVxhtSPpwFtpmxQcyqTdxX9vZaKnlwceXngYu0V4QCT1iEmJIFRCr2csQtAJV6jgnEUAtOQohb5kV9O0h5lTpIg9ZfG2crWxRWWL2Fhb2di4uiiz2rh4NdPWGud21vC8stbkdVG9xC5fm9K4a3YxtO9TuPndBdutTJ2v-aZ6LvJsw3uR6iMnCUnXCi1QkggSh3RJAQL5IJVXouvQ-z4VbSAF0GtS2LUee4Ht4MHrlBbs_vTbj4dpGsPQfI5vH-341SA0P93Nf_cs353k_XQ8jH-mlIApCqJvb1RN8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics and Statistics</source><source>SIAM Journals</source><creator>BÄNSCH, E. ; BRENNER, A.</creator><creatorcontrib>BÄNSCH, E. ; BRENNER, A.</creatorcontrib><description>A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/15M102753X</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2016-01, Vol.54 (4), p.2323-2358</ispartof><rights>Copyright ©2016 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-3405ba2921432e41f863e0e3de47d72bb1ddc82ae3700c9371bad1c21afd0d983</citedby><cites>FETCH-LOGICAL-c289t-3405ba2921432e41f863e0e3de47d72bb1ddc82ae3700c9371bad1c21afd0d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44018123$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44018123$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>BÄNSCH, E.</creatorcontrib><creatorcontrib>BRENNER, A.</creatorcontrib><title>A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES</title><title>SIAM journal on numerical analysis</title><description>A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFj0FLwzAYhoMoWKcX70LPQvT78qVLA15KyVxhtSPpwFtpmxQcyqTdxX9vZaKnlwceXngYu0V4QCT1iEmJIFRCr2csQtAJV6jgnEUAtOQohb5kV9O0h5lTpIg9ZfG2crWxRWWL2Fhb2di4uiiz2rh4NdPWGud21vC8stbkdVG9xC5fm9K4a3YxtO9TuPndBdutTJ2v-aZ6LvJsw3uR6iMnCUnXCi1QkggSh3RJAQL5IJVXouvQ-z4VbSAF0GtS2LUee4Ht4MHrlBbs_vTbj4dpGsPQfI5vH-341SA0P93Nf_cs353k_XQ8jH-mlIApCqJvb1RN8w</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>BÄNSCH, E.</creator><creator>BRENNER, A.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES</title><author>BÄNSCH, E. ; BRENNER, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-3405ba2921432e41f863e0e3de47d72bb1ddc82ae3700c9371bad1c21afd0d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BÄNSCH, E.</creatorcontrib><creatorcontrib>BRENNER, A.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BÄNSCH, E.</au><au>BRENNER, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>54</volume><issue>4</issue><spage>2323</spage><epage>2358</epage><pages>2323-2358</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/15M102753X</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2016-01, Vol.54 (4), p.2323-2358
issn 0036-1429
1095-7170
language eng
recordid cdi_crossref_primary_10_1137_15M102753X
source Jstor Complete Legacy; JSTOR Mathematics and Statistics; SIAM Journals
title A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20POSTERIORI%20ERROR%20ESTIMATES%20FOR%20PRESSURE-CORRECTION%20SCHEMES&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=B%C3%84NSCH,%20E.&rft.date=2016-01-01&rft.volume=54&rft.issue=4&rft.spage=2323&rft.epage=2358&rft.pages=2323-2358&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/15M102753X&rft_dat=%3Cjstor_cross%3E44018123%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44018123&rfr_iscdi=true