ON THE ANALYTICAL AND NUMERICAL PROPERTIES OF THE TRUNCATED LAPLACE TRANSFORM I
The Laplace Transform is frequently encountered in mathematics, physics, engineering, and other fields. However, the spectral properties of the Laplace Transform tend to complicate its numerical treatment; therefore, the closely related "Truncated" Laplace Transforms are often used in appl...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2015-01, Vol.53 (3), p.1214-1235 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1235 |
---|---|
container_issue | 3 |
container_start_page | 1214 |
container_title | SIAM journal on numerical analysis |
container_volume | 53 |
creator | LEDERMAN, R. R. ROKHLIN, V. |
description | The Laplace Transform is frequently encountered in mathematics, physics, engineering, and other fields. However, the spectral properties of the Laplace Transform tend to complicate its numerical treatment; therefore, the closely related "Truncated" Laplace Transforms are often used in applications. We have constructed efficient algorithms for the evaluation of the Singular Value Decomposition of Truncated Laplace Transforms; in the current paper, we introduce algorithms for the evaluation of the right singular functions and singular values of Truncated Laplace Transforms. Algorithms for the computation of the left singular functions will be introduced separately in an upcoming paper. The resulting algorithms are applicable to all environments likely to be encountered in applications, including the evaluation of singular functions corresponding to extremely small singular values (e.g., 10–1000). |
doi_str_mv | 10.1137/140990681 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_140990681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24512641</jstor_id><sourcerecordid>24512641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-5d3c49f4fc5f5021bdc0f7f745fc4a7580a7ec23cb24bb736f9e69033c901cd3</originalsourceid><addsrcrecordid>eNo9kEtPg0AUhSdGE7G68AeYsHWB3jsPprOcUGhJKBA6XbgiMDCJjaYGuvHfC63p6jzy5SwOIc8Ib4hMviMHpSBc4g3xEJQIJEq4JR4ACwPkVN2Th3E8wJSXyDxSFLlvNrGvc519mDTS2WRXfr7fxtU5lVVRxpVJ451fJGfUVPs80iZe-ZkuMx3Njc53SVFt_fSR3Lnma-yf_nVBTBKbaBNkxXreCywVeApExyxXjjsrnACKbWfBSSe5cJY3Uiyhkb2lzLaUt61koVN9qIAxqwBtxxbk9TJrh-M4Dr2rf4bP72b4rRHq-Yj6esTEvlzYw3g6DleQcoE05Mj-AOZjUck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON THE ANALYTICAL AND NUMERICAL PROPERTIES OF THE TRUNCATED LAPLACE TRANSFORM I</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>LEDERMAN, R. R. ; ROKHLIN, V.</creator><creatorcontrib>LEDERMAN, R. R. ; ROKHLIN, V.</creatorcontrib><description>The Laplace Transform is frequently encountered in mathematics, physics, engineering, and other fields. However, the spectral properties of the Laplace Transform tend to complicate its numerical treatment; therefore, the closely related "Truncated" Laplace Transforms are often used in applications. We have constructed efficient algorithms for the evaluation of the Singular Value Decomposition of Truncated Laplace Transforms; in the current paper, we introduce algorithms for the evaluation of the right singular functions and singular values of Truncated Laplace Transforms. Algorithms for the computation of the left singular functions will be introduced separately in an upcoming paper. The resulting algorithms are applicable to all environments likely to be encountered in applications, including the evaluation of singular functions corresponding to extremely small singular values (e.g., 10–1000).</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/140990681</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2015-01, Vol.53 (3), p.1214-1235</ispartof><rights>Copyright ©2015 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-5d3c49f4fc5f5021bdc0f7f745fc4a7580a7ec23cb24bb736f9e69033c901cd3</citedby><cites>FETCH-LOGICAL-c251t-5d3c49f4fc5f5021bdc0f7f745fc4a7580a7ec23cb24bb736f9e69033c901cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24512641$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24512641$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,3185,27929,27930,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>LEDERMAN, R. R.</creatorcontrib><creatorcontrib>ROKHLIN, V.</creatorcontrib><title>ON THE ANALYTICAL AND NUMERICAL PROPERTIES OF THE TRUNCATED LAPLACE TRANSFORM I</title><title>SIAM journal on numerical analysis</title><description>The Laplace Transform is frequently encountered in mathematics, physics, engineering, and other fields. However, the spectral properties of the Laplace Transform tend to complicate its numerical treatment; therefore, the closely related "Truncated" Laplace Transforms are often used in applications. We have constructed efficient algorithms for the evaluation of the Singular Value Decomposition of Truncated Laplace Transforms; in the current paper, we introduce algorithms for the evaluation of the right singular functions and singular values of Truncated Laplace Transforms. Algorithms for the computation of the left singular functions will be introduced separately in an upcoming paper. The resulting algorithms are applicable to all environments likely to be encountered in applications, including the evaluation of singular functions corresponding to extremely small singular values (e.g., 10–1000).</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPg0AUhSdGE7G68AeYsHWB3jsPprOcUGhJKBA6XbgiMDCJjaYGuvHfC63p6jzy5SwOIc8Ib4hMviMHpSBc4g3xEJQIJEq4JR4ACwPkVN2Th3E8wJSXyDxSFLlvNrGvc519mDTS2WRXfr7fxtU5lVVRxpVJ451fJGfUVPs80iZe-ZkuMx3Njc53SVFt_fSR3Lnma-yf_nVBTBKbaBNkxXreCywVeApExyxXjjsrnACKbWfBSSe5cJY3Uiyhkb2lzLaUt61koVN9qIAxqwBtxxbk9TJrh-M4Dr2rf4bP72b4rRHq-Yj6esTEvlzYw3g6DleQcoE05Mj-AOZjUck</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>LEDERMAN, R. R.</creator><creator>ROKHLIN, V.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>ON THE ANALYTICAL AND NUMERICAL PROPERTIES OF THE TRUNCATED LAPLACE TRANSFORM I</title><author>LEDERMAN, R. R. ; ROKHLIN, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-5d3c49f4fc5f5021bdc0f7f745fc4a7580a7ec23cb24bb736f9e69033c901cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEDERMAN, R. R.</creatorcontrib><creatorcontrib>ROKHLIN, V.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEDERMAN, R. R.</au><au>ROKHLIN, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE ANALYTICAL AND NUMERICAL PROPERTIES OF THE TRUNCATED LAPLACE TRANSFORM I</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>53</volume><issue>3</issue><spage>1214</spage><epage>1235</epage><pages>1214-1235</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>The Laplace Transform is frequently encountered in mathematics, physics, engineering, and other fields. However, the spectral properties of the Laplace Transform tend to complicate its numerical treatment; therefore, the closely related "Truncated" Laplace Transforms are often used in applications. We have constructed efficient algorithms for the evaluation of the Singular Value Decomposition of Truncated Laplace Transforms; in the current paper, we introduce algorithms for the evaluation of the right singular functions and singular values of Truncated Laplace Transforms. Algorithms for the computation of the left singular functions will be introduced separately in an upcoming paper. The resulting algorithms are applicable to all environments likely to be encountered in applications, including the evaluation of singular functions corresponding to extremely small singular values (e.g., 10–1000).</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/140990681</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2015-01, Vol.53 (3), p.1214-1235 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_crossref_primary_10_1137_140990681 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
title | ON THE ANALYTICAL AND NUMERICAL PROPERTIES OF THE TRUNCATED LAPLACE TRANSFORM I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20ANALYTICAL%20AND%20NUMERICAL%20PROPERTIES%20OF%20THE%20TRUNCATED%20LAPLACE%20TRANSFORM%20I&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=LEDERMAN,%20R.%20R.&rft.date=2015-01-01&rft.volume=53&rft.issue=3&rft.spage=1214&rft.epage=1235&rft.pages=1214-1235&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/140990681&rft_dat=%3Cjstor_cross%3E24512641%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24512641&rfr_iscdi=true |