THE TRANSITION TO A POINT CONSTRAINT IN A MIXED BIHARMONIC EIGENVALUE PROBLEM
The mixed-order eigenvalue problem –δΔ2u + Δu + λu = 0 with δ > 0, modeling small amplitude vibrations of a thin plate, is analyzed in a bounded two-dimensional domain Ω that contains a single small hole of radius ε centered at some x0 ∈ Ω. Clamped conditions are imposed on the boundary of Ω and...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 2015-01, Vol.75 (3), p.1193-1224 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1224 |
---|---|
container_issue | 3 |
container_start_page | 1193 |
container_title | SIAM journal on applied mathematics |
container_volume | 75 |
creator | LINDSAY, A. E. WARD, M. J. KOLOKOLNIKOV, T. |
description | The mixed-order eigenvalue problem –δΔ2u + Δu + λu = 0 with δ > 0, modeling small amplitude vibrations of a thin plate, is analyzed in a bounded two-dimensional domain Ω that contains a single small hole of radius ε centered at some x0 ∈ Ω. Clamped conditions are imposed on the boundary of Ω and on the boundary of the small hole. In the limit ε → 0, and for δ = O(1), the limiting problem for u must satisfy the additional point constraint u(x0) = 0. To determine how the eigenvalues of the Laplacian in a domain with a small hole are perturbed by adding the small fourth-order term –δΔ2u, together with an additional boundary condition on ∂Ω and on the hole boundary, the asymptotic behavior of the eigenvalues of the mixed-order eigenvalue problem are studied in the dual limit ε → 0 and δ → 0. Leading-order behaviors of eigenvalues are determined for three ranges of δ ≪ 1: δ ≪ O(ε2), δ = O(ε2), and O(ε2) ≪ δ ≪ 1. In the first two of these regimes, the limiting behavior depends of the radius of the hole ε, while in the regime O(ε2) ≪ δ ≪ 1 the eigenvalue is asymptotically independent of ε. Therefore, it is this regime that provides a transition to the point constraint behavior characteristic of the range δ = O(1). The asymptotic results for the eigenvalues are validated by full numerical simulations of the PDE. |
doi_str_mv | 10.1137/140979447 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_140979447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24511491</jstor_id><sourcerecordid>24511491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-978c01bf77eefa3f3c1da189e15bac9cc9383949db2260c8c2441d8c03210c533</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqUw8ABIXhkCPtuJc2MaTGspsas0Rd2i1E0kKlBR3IW3J1VRp_t1_3c3fIQ8AnsBEOoVJEOFUqorMgGGcaSAb67JhDGRRCAQb8ldCHvGABKJE1LWC03rKrMrUxtnae1oRpfO2Jrmzq7G5hSNHbel2eg3OjOLrCqdNTnVZq7tR1asNV1Wblbo8p7c9O1X6B7-55Ss33WdL6LCzU2eFZHnMRwjVKlnsO2V6rq-Fb3wsGshxQ7ibevRexSpQIm7LecJ86nnUsJuvBEcmI-FmJLn818_HEIYur75GT6_2-G3AdacPDQXDyP7dGb34XgYLiCXMYBEEH_AlVFf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE TRANSITION TO A POINT CONSTRAINT IN A MIXED BIHARMONIC EIGENVALUE PROBLEM</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>LINDSAY, A. E. ; WARD, M. J. ; KOLOKOLNIKOV, T.</creator><creatorcontrib>LINDSAY, A. E. ; WARD, M. J. ; KOLOKOLNIKOV, T.</creatorcontrib><description>The mixed-order eigenvalue problem –δΔ2u + Δu + λu = 0 with δ > 0, modeling small amplitude vibrations of a thin plate, is analyzed in a bounded two-dimensional domain Ω that contains a single small hole of radius ε centered at some x0 ∈ Ω. Clamped conditions are imposed on the boundary of Ω and on the boundary of the small hole. In the limit ε → 0, and for δ = O(1), the limiting problem for u must satisfy the additional point constraint u(x0) = 0. To determine how the eigenvalues of the Laplacian in a domain with a small hole are perturbed by adding the small fourth-order term –δΔ2u, together with an additional boundary condition on ∂Ω and on the hole boundary, the asymptotic behavior of the eigenvalues of the mixed-order eigenvalue problem are studied in the dual limit ε → 0 and δ → 0. Leading-order behaviors of eigenvalues are determined for three ranges of δ ≪ 1: δ ≪ O(ε2), δ = O(ε2), and O(ε2) ≪ δ ≪ 1. In the first two of these regimes, the limiting behavior depends of the radius of the hole ε, while in the regime O(ε2) ≪ δ ≪ 1 the eigenvalue is asymptotically independent of ε. Therefore, it is this regime that provides a transition to the point constraint behavior characteristic of the range δ = O(1). The asymptotic results for the eigenvalues are validated by full numerical simulations of the PDE.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/140979447</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on applied mathematics, 2015-01, Vol.75 (3), p.1193-1224</ispartof><rights>Copyright ©2015 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-978c01bf77eefa3f3c1da189e15bac9cc9383949db2260c8c2441d8c03210c533</citedby><cites>FETCH-LOGICAL-c251t-978c01bf77eefa3f3c1da189e15bac9cc9383949db2260c8c2441d8c03210c533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24511491$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24511491$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,3186,27929,27930,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>LINDSAY, A. E.</creatorcontrib><creatorcontrib>WARD, M. J.</creatorcontrib><creatorcontrib>KOLOKOLNIKOV, T.</creatorcontrib><title>THE TRANSITION TO A POINT CONSTRAINT IN A MIXED BIHARMONIC EIGENVALUE PROBLEM</title><title>SIAM journal on applied mathematics</title><description>The mixed-order eigenvalue problem –δΔ2u + Δu + λu = 0 with δ > 0, modeling small amplitude vibrations of a thin plate, is analyzed in a bounded two-dimensional domain Ω that contains a single small hole of radius ε centered at some x0 ∈ Ω. Clamped conditions are imposed on the boundary of Ω and on the boundary of the small hole. In the limit ε → 0, and for δ = O(1), the limiting problem for u must satisfy the additional point constraint u(x0) = 0. To determine how the eigenvalues of the Laplacian in a domain with a small hole are perturbed by adding the small fourth-order term –δΔ2u, together with an additional boundary condition on ∂Ω and on the hole boundary, the asymptotic behavior of the eigenvalues of the mixed-order eigenvalue problem are studied in the dual limit ε → 0 and δ → 0. Leading-order behaviors of eigenvalues are determined for three ranges of δ ≪ 1: δ ≪ O(ε2), δ = O(ε2), and O(ε2) ≪ δ ≪ 1. In the first two of these regimes, the limiting behavior depends of the radius of the hole ε, while in the regime O(ε2) ≪ δ ≪ 1 the eigenvalue is asymptotically independent of ε. Therefore, it is this regime that provides a transition to the point constraint behavior characteristic of the range δ = O(1). The asymptotic results for the eigenvalues are validated by full numerical simulations of the PDE.</description><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAQhi0EEqUw8ABIXhkCPtuJc2MaTGspsas0Rd2i1E0kKlBR3IW3J1VRp_t1_3c3fIQ8AnsBEOoVJEOFUqorMgGGcaSAb67JhDGRRCAQb8ldCHvGABKJE1LWC03rKrMrUxtnae1oRpfO2Jrmzq7G5hSNHbel2eg3OjOLrCqdNTnVZq7tR1asNV1Wblbo8p7c9O1X6B7-55Ss33WdL6LCzU2eFZHnMRwjVKlnsO2V6rq-Fb3wsGshxQ7ibevRexSpQIm7LecJ86nnUsJuvBEcmI-FmJLn818_HEIYur75GT6_2-G3AdacPDQXDyP7dGb34XgYLiCXMYBEEH_AlVFf</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>LINDSAY, A. E.</creator><creator>WARD, M. J.</creator><creator>KOLOKOLNIKOV, T.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>THE TRANSITION TO A POINT CONSTRAINT IN A MIXED BIHARMONIC EIGENVALUE PROBLEM</title><author>LINDSAY, A. E. ; WARD, M. J. ; KOLOKOLNIKOV, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-978c01bf77eefa3f3c1da189e15bac9cc9383949db2260c8c2441d8c03210c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LINDSAY, A. E.</creatorcontrib><creatorcontrib>WARD, M. J.</creatorcontrib><creatorcontrib>KOLOKOLNIKOV, T.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LINDSAY, A. E.</au><au>WARD, M. J.</au><au>KOLOKOLNIKOV, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE TRANSITION TO A POINT CONSTRAINT IN A MIXED BIHARMONIC EIGENVALUE PROBLEM</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>75</volume><issue>3</issue><spage>1193</spage><epage>1224</epage><pages>1193-1224</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>The mixed-order eigenvalue problem –δΔ2u + Δu + λu = 0 with δ > 0, modeling small amplitude vibrations of a thin plate, is analyzed in a bounded two-dimensional domain Ω that contains a single small hole of radius ε centered at some x0 ∈ Ω. Clamped conditions are imposed on the boundary of Ω and on the boundary of the small hole. In the limit ε → 0, and for δ = O(1), the limiting problem for u must satisfy the additional point constraint u(x0) = 0. To determine how the eigenvalues of the Laplacian in a domain with a small hole are perturbed by adding the small fourth-order term –δΔ2u, together with an additional boundary condition on ∂Ω and on the hole boundary, the asymptotic behavior of the eigenvalues of the mixed-order eigenvalue problem are studied in the dual limit ε → 0 and δ → 0. Leading-order behaviors of eigenvalues are determined for three ranges of δ ≪ 1: δ ≪ O(ε2), δ = O(ε2), and O(ε2) ≪ δ ≪ 1. In the first two of these regimes, the limiting behavior depends of the radius of the hole ε, while in the regime O(ε2) ≪ δ ≪ 1 the eigenvalue is asymptotically independent of ε. Therefore, it is this regime that provides a transition to the point constraint behavior characteristic of the range δ = O(1). The asymptotic results for the eigenvalues are validated by full numerical simulations of the PDE.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/140979447</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1399 |
ispartof | SIAM journal on applied mathematics, 2015-01, Vol.75 (3), p.1193-1224 |
issn | 0036-1399 1095-712X |
language | eng |
recordid | cdi_crossref_primary_10_1137_140979447 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive |
title | THE TRANSITION TO A POINT CONSTRAINT IN A MIXED BIHARMONIC EIGENVALUE PROBLEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20TRANSITION%20TO%20A%20POINT%20CONSTRAINT%20IN%20A%20MIXED%20BIHARMONIC%20EIGENVALUE%20PROBLEM&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=LINDSAY,%20A.%20E.&rft.date=2015-01-01&rft.volume=75&rft.issue=3&rft.spage=1193&rft.epage=1224&rft.pages=1193-1224&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/140979447&rft_dat=%3Cjstor_cross%3E24511491%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24511491&rfr_iscdi=true |