NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS
The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optim...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2015-01, Vol.53 (3), p.1350-1369 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1369 |
---|---|
container_issue | 3 |
container_start_page | 1350 |
container_title | SIAM journal on numerical analysis |
container_volume | 53 |
creator | GARRAPPA, ROBERTO |
description | The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reducing the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented. |
doi_str_mv | 10.1137/140971191 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_140971191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24512647</jstor_id><sourcerecordid>24512647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-baaf9aa37686f1578d164d9c652e2b37ddaf6971df8b66604c7774e525a557f83</originalsourceid><addsrcrecordid>eNo9kEtLxDAcxIMoWFcPfgAhVw_V_PNsj6Gmu4U-pKZ6LOkj4KKstHvx29uysqdh4DcDMwjdA3kCYOoZOIkVQAwXKAASi1CBIpcoIITJEDiNr9HNPO_J4iNgAdqVTWHqLNE5Nu86b7TNqhJXKbYfFdblC7a72hj8qmtdGGtqXGTW6m2YmzTNF5s2ZbJG3m7RlXdf83j3rxvUpMYmuzCvtmt92DNBj2HnnI-dY0pG0oNQ0QCSD3EvBR1px9QwOC-XBYOPOikl4b1Sio-CCieE8hHboMdTbz8d5nkaffszfX676bcF0q4XtOcLFvbhxO7n42E6g5QLoJIr9gcTvU_y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>GARRAPPA, ROBERTO</creator><creatorcontrib>GARRAPPA, ROBERTO</creatorcontrib><description>The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reducing the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/140971191</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2015-01, Vol.53 (3), p.1350-1369</ispartof><rights>Copyright ©2015 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-baaf9aa37686f1578d164d9c652e2b37ddaf6971df8b66604c7774e525a557f83</citedby><cites>FETCH-LOGICAL-c352t-baaf9aa37686f1578d164d9c652e2b37ddaf6971df8b66604c7774e525a557f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24512647$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24512647$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,3171,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>GARRAPPA, ROBERTO</creatorcontrib><title>NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS</title><title>SIAM journal on numerical analysis</title><description>The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reducing the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAcxIMoWFcPfgAhVw_V_PNsj6Gmu4U-pKZ6LOkj4KKstHvx29uysqdh4DcDMwjdA3kCYOoZOIkVQAwXKAASi1CBIpcoIITJEDiNr9HNPO_J4iNgAdqVTWHqLNE5Nu86b7TNqhJXKbYfFdblC7a72hj8qmtdGGtqXGTW6m2YmzTNF5s2ZbJG3m7RlXdf83j3rxvUpMYmuzCvtmt92DNBj2HnnI-dY0pG0oNQ0QCSD3EvBR1px9QwOC-XBYOPOikl4b1Sio-CCieE8hHboMdTbz8d5nkaffszfX676bcF0q4XtOcLFvbhxO7n42E6g5QLoJIr9gcTvU_y</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>GARRAPPA, ROBERTO</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS</title><author>GARRAPPA, ROBERTO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-baaf9aa37686f1578d164d9c652e2b37ddaf6971df8b66604c7774e525a557f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GARRAPPA, ROBERTO</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GARRAPPA, ROBERTO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>53</volume><issue>3</issue><spage>1350</spage><epage>1369</epage><pages>1350-1369</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reducing the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/140971191</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2015-01, Vol.53 (3), p.1350-1369 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_crossref_primary_10_1137_140971191 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
title | NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20EVALUATION%20OF%20TWO%20AND%20THREE%20PARAMETER%20MITTAG-LEFFLER%20FUNCTIONS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=GARRAPPA,%20ROBERTO&rft.date=2015-01-01&rft.volume=53&rft.issue=3&rft.spage=1350&rft.epage=1369&rft.pages=1350-1369&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/140971191&rft_dat=%3Cjstor_cross%3E24512647%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24512647&rfr_iscdi=true |