NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS

The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2015-01, Vol.53 (3), p.1350-1369
1. Verfasser: GARRAPPA, ROBERTO
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1369
container_issue 3
container_start_page 1350
container_title SIAM journal on numerical analysis
container_volume 53
creator GARRAPPA, ROBERTO
description The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reducing the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented.
doi_str_mv 10.1137/140971191
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_140971191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24512647</jstor_id><sourcerecordid>24512647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-baaf9aa37686f1578d164d9c652e2b37ddaf6971df8b66604c7774e525a557f83</originalsourceid><addsrcrecordid>eNo9kEtLxDAcxIMoWFcPfgAhVw_V_PNsj6Gmu4U-pKZ6LOkj4KKstHvx29uysqdh4DcDMwjdA3kCYOoZOIkVQAwXKAASi1CBIpcoIITJEDiNr9HNPO_J4iNgAdqVTWHqLNE5Nu86b7TNqhJXKbYfFdblC7a72hj8qmtdGGtqXGTW6m2YmzTNF5s2ZbJG3m7RlXdf83j3rxvUpMYmuzCvtmt92DNBj2HnnI-dY0pG0oNQ0QCSD3EvBR1px9QwOC-XBYOPOikl4b1Sio-CCieE8hHboMdTbz8d5nkaffszfX676bcF0q4XtOcLFvbhxO7n42E6g5QLoJIr9gcTvU_y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>GARRAPPA, ROBERTO</creator><creatorcontrib>GARRAPPA, ROBERTO</creatorcontrib><description>The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reducing the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/140971191</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2015-01, Vol.53 (3), p.1350-1369</ispartof><rights>Copyright ©2015 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-baaf9aa37686f1578d164d9c652e2b37ddaf6971df8b66604c7774e525a557f83</citedby><cites>FETCH-LOGICAL-c352t-baaf9aa37686f1578d164d9c652e2b37ddaf6971df8b66604c7774e525a557f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24512647$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24512647$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,3171,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>GARRAPPA, ROBERTO</creatorcontrib><title>NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS</title><title>SIAM journal on numerical analysis</title><description>The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reducing the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAcxIMoWFcPfgAhVw_V_PNsj6Gmu4U-pKZ6LOkj4KKstHvx29uysqdh4DcDMwjdA3kCYOoZOIkVQAwXKAASi1CBIpcoIITJEDiNr9HNPO_J4iNgAdqVTWHqLNE5Nu86b7TNqhJXKbYfFdblC7a72hj8qmtdGGtqXGTW6m2YmzTNF5s2ZbJG3m7RlXdf83j3rxvUpMYmuzCvtmt92DNBj2HnnI-dY0pG0oNQ0QCSD3EvBR1px9QwOC-XBYOPOikl4b1Sio-CCieE8hHboMdTbz8d5nkaffszfX676bcF0q4XtOcLFvbhxO7n42E6g5QLoJIr9gcTvU_y</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>GARRAPPA, ROBERTO</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS</title><author>GARRAPPA, ROBERTO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-baaf9aa37686f1578d164d9c652e2b37ddaf6971df8b66604c7774e525a557f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GARRAPPA, ROBERTO</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GARRAPPA, ROBERTO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>53</volume><issue>3</issue><spage>1350</spage><epage>1369</epage><pages>1350-1369</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but very few methods are available for its numerical evaluation. In this work we present a method for the efficient computation of the ML function based on the numerical inversion of its Laplace transform (LT): an optimal parabolic contour is selected on the basis of the distance and the strength of the singularities of the LT, with the aim of minimizing the computational effort and reducing the propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the proposed approach. The application to the three parameter ML (also known as Prabhakar) function is also presented.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/140971191</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2015-01, Vol.53 (3), p.1350-1369
issn 0036-1429
1095-7170
language eng
recordid cdi_crossref_primary_10_1137_140971191
source SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
title NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20EVALUATION%20OF%20TWO%20AND%20THREE%20PARAMETER%20MITTAG-LEFFLER%20FUNCTIONS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=GARRAPPA,%20ROBERTO&rft.date=2015-01-01&rft.volume=53&rft.issue=3&rft.spage=1350&rft.epage=1369&rft.pages=1350-1369&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/140971191&rft_dat=%3Cjstor_cross%3E24512647%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24512647&rfr_iscdi=true