AN ENERGY-MINIMIZATION FINITE-ELEMENT APPROACH FOR THE FRANK-OSEEN MODEL OF NEMATIC LIQUID CRYSTALS

This paper outlines an energy-minimization finite-element approach to the computational modeling of equilibrium configurations for nematic liquid crystals under free elastic effects. The method targets minimization of the system free energy based on the Frank-Oseen free-energy model. Solutions to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2015-01, Vol.53 (5), p.2226-2254
Hauptverfasser: ADLER, J. H., ATHERTON, T. J., EMERSON, D. B., MACLACHLAN, S. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2254
container_issue 5
container_start_page 2226
container_title SIAM journal on numerical analysis
container_volume 53
creator ADLER, J. H.
ATHERTON, T. J.
EMERSON, D. B.
MACLACHLAN, S. P.
description This paper outlines an energy-minimization finite-element approach to the computational modeling of equilibrium configurations for nematic liquid crystals under free elastic effects. The method targets minimization of the system free energy based on the Frank-Oseen free-energy model. Solutions to the intermediate discretized free elastic linearizations are shown to exist generally and are unique under certain assumptions. This requires proving continuity, coercivity, and weak coercivity for the accompanying appropriate bilinear forms within a mixed finite-element framework. Error analysis demonstrates that the method constitutes a convergent scheme. Numerical experiments are performed for problems with a range of physical parameters as well as simple and patterned boundary conditions. The resulting algorithm accurately handles heterogeneous constant coefficients and effectively resolves configurations resulting from complicated boundary conditions relevant in ongoing research.
doi_str_mv 10.1137/140956567
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_140956567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43901687</jstor_id><sourcerecordid>43901687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-e54b76c1e48845399a910414f3ea63ad7c0ba677e222791a0a6eb68f50f8bdf53</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqUw8AOQvDIY_MZf8RilTmuR2CVNh7JETppIVKCipAv_niBQp7uTnrvhELoH-gTA1DNwqoUUUl2gGUyWKFD0Es0oZZIAj_Q1uhnHA51yDGyG2sRh40y53JHCOlvYt6Sy3uFsCpUhJjeFcRVO1uvSJ-kKZ77E1crgrEzcC_EbYxwu_MLk2GfYmWJqpzi3r1u7wGm521RJvrlFV334GLu7f52jbWaqdEVyv7RpkpM2EnAineCNki10PI65YFoHDZQD71kXJAt71dImSKW6KIqUhkCD7BoZ94L2cbPvBZujx7_ddjiO49D19dfw_hmG7xpo_ftOfX5nYh_-2MN4Og5nkDNNQcaK_QChNFcx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN ENERGY-MINIMIZATION FINITE-ELEMENT APPROACH FOR THE FRANK-OSEEN MODEL OF NEMATIC LIQUID CRYSTALS</title><source>SIAM Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>ADLER, J. H. ; ATHERTON, T. J. ; EMERSON, D. B. ; MACLACHLAN, S. P.</creator><creatorcontrib>ADLER, J. H. ; ATHERTON, T. J. ; EMERSON, D. B. ; MACLACHLAN, S. P.</creatorcontrib><description>This paper outlines an energy-minimization finite-element approach to the computational modeling of equilibrium configurations for nematic liquid crystals under free elastic effects. The method targets minimization of the system free energy based on the Frank-Oseen free-energy model. Solutions to the intermediate discretized free elastic linearizations are shown to exist generally and are unique under certain assumptions. This requires proving continuity, coercivity, and weak coercivity for the accompanying appropriate bilinear forms within a mixed finite-element framework. Error analysis demonstrates that the method constitutes a convergent scheme. Numerical experiments are performed for problems with a range of physical parameters as well as simple and patterned boundary conditions. The resulting algorithm accurately handles heterogeneous constant coefficients and effectively resolves configurations resulting from complicated boundary conditions relevant in ongoing research.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/140956567</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2015-01, Vol.53 (5), p.2226-2254</ispartof><rights>Copyright ©2015 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-e54b76c1e48845399a910414f3ea63ad7c0ba677e222791a0a6eb68f50f8bdf53</citedby><cites>FETCH-LOGICAL-c251t-e54b76c1e48845399a910414f3ea63ad7c0ba677e222791a0a6eb68f50f8bdf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43901687$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43901687$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>ADLER, J. H.</creatorcontrib><creatorcontrib>ATHERTON, T. J.</creatorcontrib><creatorcontrib>EMERSON, D. B.</creatorcontrib><creatorcontrib>MACLACHLAN, S. P.</creatorcontrib><title>AN ENERGY-MINIMIZATION FINITE-ELEMENT APPROACH FOR THE FRANK-OSEEN MODEL OF NEMATIC LIQUID CRYSTALS</title><title>SIAM journal on numerical analysis</title><description>This paper outlines an energy-minimization finite-element approach to the computational modeling of equilibrium configurations for nematic liquid crystals under free elastic effects. The method targets minimization of the system free energy based on the Frank-Oseen free-energy model. Solutions to the intermediate discretized free elastic linearizations are shown to exist generally and are unique under certain assumptions. This requires proving continuity, coercivity, and weak coercivity for the accompanying appropriate bilinear forms within a mixed finite-element framework. Error analysis demonstrates that the method constitutes a convergent scheme. Numerical experiments are performed for problems with a range of physical parameters as well as simple and patterned boundary conditions. The resulting algorithm accurately handles heterogeneous constant coefficients and effectively resolves configurations resulting from complicated boundary conditions relevant in ongoing research.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EEqUw8AOQvDIY_MZf8RilTmuR2CVNh7JETppIVKCipAv_niBQp7uTnrvhELoH-gTA1DNwqoUUUl2gGUyWKFD0Es0oZZIAj_Q1uhnHA51yDGyG2sRh40y53JHCOlvYt6Sy3uFsCpUhJjeFcRVO1uvSJ-kKZ77E1crgrEzcC_EbYxwu_MLk2GfYmWJqpzi3r1u7wGm521RJvrlFV334GLu7f52jbWaqdEVyv7RpkpM2EnAineCNki10PI65YFoHDZQD71kXJAt71dImSKW6KIqUhkCD7BoZ94L2cbPvBZujx7_ddjiO49D19dfw_hmG7xpo_ftOfX5nYh_-2MN4Og5nkDNNQcaK_QChNFcx</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>ADLER, J. H.</creator><creator>ATHERTON, T. J.</creator><creator>EMERSON, D. B.</creator><creator>MACLACHLAN, S. P.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>AN ENERGY-MINIMIZATION FINITE-ELEMENT APPROACH FOR THE FRANK-OSEEN MODEL OF NEMATIC LIQUID CRYSTALS</title><author>ADLER, J. H. ; ATHERTON, T. J. ; EMERSON, D. B. ; MACLACHLAN, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-e54b76c1e48845399a910414f3ea63ad7c0ba677e222791a0a6eb68f50f8bdf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ADLER, J. H.</creatorcontrib><creatorcontrib>ATHERTON, T. J.</creatorcontrib><creatorcontrib>EMERSON, D. B.</creatorcontrib><creatorcontrib>MACLACHLAN, S. P.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ADLER, J. H.</au><au>ATHERTON, T. J.</au><au>EMERSON, D. B.</au><au>MACLACHLAN, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ENERGY-MINIMIZATION FINITE-ELEMENT APPROACH FOR THE FRANK-OSEEN MODEL OF NEMATIC LIQUID CRYSTALS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>53</volume><issue>5</issue><spage>2226</spage><epage>2254</epage><pages>2226-2254</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>This paper outlines an energy-minimization finite-element approach to the computational modeling of equilibrium configurations for nematic liquid crystals under free elastic effects. The method targets minimization of the system free energy based on the Frank-Oseen free-energy model. Solutions to the intermediate discretized free elastic linearizations are shown to exist generally and are unique under certain assumptions. This requires proving continuity, coercivity, and weak coercivity for the accompanying appropriate bilinear forms within a mixed finite-element framework. Error analysis demonstrates that the method constitutes a convergent scheme. Numerical experiments are performed for problems with a range of physical parameters as well as simple and patterned boundary conditions. The resulting algorithm accurately handles heterogeneous constant coefficients and effectively resolves configurations resulting from complicated boundary conditions relevant in ongoing research.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/140956567</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2015-01, Vol.53 (5), p.2226-2254
issn 0036-1429
1095-7170
language eng
recordid cdi_crossref_primary_10_1137_140956567
source SIAM Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy
title AN ENERGY-MINIMIZATION FINITE-ELEMENT APPROACH FOR THE FRANK-OSEEN MODEL OF NEMATIC LIQUID CRYSTALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ENERGY-MINIMIZATION%20FINITE-ELEMENT%20APPROACH%20FOR%20THE%20FRANK-OSEEN%20MODEL%20OF%20NEMATIC%20LIQUID%20CRYSTALS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=ADLER,%20J.%20H.&rft.date=2015-01-01&rft.volume=53&rft.issue=5&rft.spage=2226&rft.epage=2254&rft.pages=2226-2254&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/140956567&rft_dat=%3Cjstor_cross%3E43901687%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43901687&rfr_iscdi=true