Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode
The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonat...
Gespeichert in:
Veröffentlicht in: | Gyroscopy and navigation (Online) 2010, Vol.1 (1), p.43-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Gyroscopy and navigation (Online) |
container_volume | 1 |
creator | Martynenko, Yu. G. Merkuriev, I. V. Podalkov, V. V. |
description | The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonator dynamics in slow variables measured by the device electronic circuit is investigated according to the Krylov-Bogolyubov averaging method. It is shown that the nonlinear elastic properties of the resonator material led to additional errors of the gyroscope, unstable branches of resonance curves, and quenching. |
doi_str_mv | 10.1134/S2075108710010074 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S2075108710010074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S2075108710010074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2034-68099ee4c923855d5c744f3fc629118ac369bd497742aff60ca82064f26b8a533</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKUfwM0_EFg_4scRlaeoxAE4R65jt66SOLLLIX-Po8IJCWml3Z3dWc0OQtcEbghh_PadgqwJKEkASkh-hhYzVBEC-vy3LvNLtMr5AAC0rFIhF-j1fhpMH2zG0WODUxh2uLQp9s7uzRCs6fBuSjHbODocBnzcO-xjsq6tChi6zhxDHHAfW3eFLrzpslv95CX6fHz4WD9Xm7enl_XdprIUGK-EAq2d41ZTpuq6ra3k3DNvBdWEKGOZ0NuWayk5Nd4LsEZRENxTsVWmZmyJyOlukZlzcr4ZU-hNmhoCzWxI88eQwqEnTh7nH11qDvErDUXmP6Rvd-thDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode</title><source>SpringerLink Journals - AutoHoldings</source><creator>Martynenko, Yu. G. ; Merkuriev, I. V. ; Podalkov, V. V.</creator><creatorcontrib>Martynenko, Yu. G. ; Merkuriev, I. V. ; Podalkov, V. V.</creatorcontrib><description>The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonator dynamics in slow variables measured by the device electronic circuit is investigated according to the Krylov-Bogolyubov averaging method. It is shown that the nonlinear elastic properties of the resonator material led to additional errors of the gyroscope, unstable branches of resonance curves, and quenching.</description><identifier>ISSN: 2075-1087</identifier><identifier>EISSN: 2075-1109</identifier><identifier>DOI: 10.1134/S2075108710010074</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Aerospace Technology and Astronautics ; Engineering ; Geophysics/Geodesy</subject><ispartof>Gyroscopy and navigation (Online), 2010, Vol.1 (1), p.43-51</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2034-68099ee4c923855d5c744f3fc629118ac369bd497742aff60ca82064f26b8a533</citedby><cites>FETCH-LOGICAL-c2034-68099ee4c923855d5c744f3fc629118ac369bd497742aff60ca82064f26b8a533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2075108710010074$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2075108710010074$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Martynenko, Yu. G.</creatorcontrib><creatorcontrib>Merkuriev, I. V.</creatorcontrib><creatorcontrib>Podalkov, V. V.</creatorcontrib><title>Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode</title><title>Gyroscopy and navigation (Online)</title><addtitle>Gyroscopy Navig</addtitle><description>The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonator dynamics in slow variables measured by the device electronic circuit is investigated according to the Krylov-Bogolyubov averaging method. It is shown that the nonlinear elastic properties of the resonator material led to additional errors of the gyroscope, unstable branches of resonance curves, and quenching.</description><subject>Aerospace Technology and Astronautics</subject><subject>Engineering</subject><subject>Geophysics/Geodesy</subject><issn>2075-1087</issn><issn>2075-1109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKUfwM0_EFg_4scRlaeoxAE4R65jt66SOLLLIX-Po8IJCWml3Z3dWc0OQtcEbghh_PadgqwJKEkASkh-hhYzVBEC-vy3LvNLtMr5AAC0rFIhF-j1fhpMH2zG0WODUxh2uLQp9s7uzRCs6fBuSjHbODocBnzcO-xjsq6tChi6zhxDHHAfW3eFLrzpslv95CX6fHz4WD9Xm7enl_XdprIUGK-EAq2d41ZTpuq6ra3k3DNvBdWEKGOZ0NuWayk5Nd4LsEZRENxTsVWmZmyJyOlukZlzcr4ZU-hNmhoCzWxI88eQwqEnTh7nH11qDvErDUXmP6Rvd-thDg</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Martynenko, Yu. G.</creator><creator>Merkuriev, I. V.</creator><creator>Podalkov, V. V.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2010</creationdate><title>Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode</title><author>Martynenko, Yu. G. ; Merkuriev, I. V. ; Podalkov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2034-68099ee4c923855d5c744f3fc629118ac369bd497742aff60ca82064f26b8a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Engineering</topic><topic>Geophysics/Geodesy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martynenko, Yu. G.</creatorcontrib><creatorcontrib>Merkuriev, I. V.</creatorcontrib><creatorcontrib>Podalkov, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Gyroscopy and navigation (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martynenko, Yu. G.</au><au>Merkuriev, I. V.</au><au>Podalkov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode</atitle><jtitle>Gyroscopy and navigation (Online)</jtitle><stitle>Gyroscopy Navig</stitle><date>2010</date><risdate>2010</risdate><volume>1</volume><issue>1</issue><spage>43</spage><epage>51</epage><pages>43-51</pages><issn>2075-1087</issn><eissn>2075-1109</eissn><abstract>The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonator dynamics in slow variables measured by the device electronic circuit is investigated according to the Krylov-Bogolyubov averaging method. It is shown that the nonlinear elastic properties of the resonator material led to additional errors of the gyroscope, unstable branches of resonance curves, and quenching.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S2075108710010074</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1087 |
ispartof | Gyroscopy and navigation (Online), 2010, Vol.1 (1), p.43-51 |
issn | 2075-1087 2075-1109 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S2075108710010074 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aerospace Technology and Astronautics Engineering Geophysics/Geodesy |
title | Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20a%20ring%20micromechanical%20gyroscope%20in%20the%20forced-oscillation%20mode&rft.jtitle=Gyroscopy%20and%20navigation%20(Online)&rft.au=Martynenko,%20Yu.%20G.&rft.date=2010&rft.volume=1&rft.issue=1&rft.spage=43&rft.epage=51&rft.pages=43-51&rft.issn=2075-1087&rft.eissn=2075-1109&rft_id=info:doi/10.1134/S2075108710010074&rft_dat=%3Ccrossref_sprin%3E10_1134_S2075108710010074%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |