Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode

The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gyroscopy and navigation (Online) 2010, Vol.1 (1), p.43-51
Hauptverfasser: Martynenko, Yu. G., Merkuriev, I. V., Podalkov, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 43
container_title Gyroscopy and navigation (Online)
container_volume 1
creator Martynenko, Yu. G.
Merkuriev, I. V.
Podalkov, V. V.
description The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonator dynamics in slow variables measured by the device electronic circuit is investigated according to the Krylov-Bogolyubov averaging method. It is shown that the nonlinear elastic properties of the resonator material led to additional errors of the gyroscope, unstable branches of resonance curves, and quenching.
doi_str_mv 10.1134/S2075108710010074
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S2075108710010074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S2075108710010074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2034-68099ee4c923855d5c744f3fc629118ac369bd497742aff60ca82064f26b8a533</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKUfwM0_EFg_4scRlaeoxAE4R65jt66SOLLLIX-Po8IJCWml3Z3dWc0OQtcEbghh_PadgqwJKEkASkh-hhYzVBEC-vy3LvNLtMr5AAC0rFIhF-j1fhpMH2zG0WODUxh2uLQp9s7uzRCs6fBuSjHbODocBnzcO-xjsq6tChi6zhxDHHAfW3eFLrzpslv95CX6fHz4WD9Xm7enl_XdprIUGK-EAq2d41ZTpuq6ra3k3DNvBdWEKGOZ0NuWayk5Nd4LsEZRENxTsVWmZmyJyOlukZlzcr4ZU-hNmhoCzWxI88eQwqEnTh7nH11qDvErDUXmP6Rvd-thDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode</title><source>SpringerLink Journals - AutoHoldings</source><creator>Martynenko, Yu. G. ; Merkuriev, I. V. ; Podalkov, V. V.</creator><creatorcontrib>Martynenko, Yu. G. ; Merkuriev, I. V. ; Podalkov, V. V.</creatorcontrib><description>The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonator dynamics in slow variables measured by the device electronic circuit is investigated according to the Krylov-Bogolyubov averaging method. It is shown that the nonlinear elastic properties of the resonator material led to additional errors of the gyroscope, unstable branches of resonance curves, and quenching.</description><identifier>ISSN: 2075-1087</identifier><identifier>EISSN: 2075-1109</identifier><identifier>DOI: 10.1134/S2075108710010074</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Aerospace Technology and Astronautics ; Engineering ; Geophysics/Geodesy</subject><ispartof>Gyroscopy and navigation (Online), 2010, Vol.1 (1), p.43-51</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2034-68099ee4c923855d5c744f3fc629118ac369bd497742aff60ca82064f26b8a533</citedby><cites>FETCH-LOGICAL-c2034-68099ee4c923855d5c744f3fc629118ac369bd497742aff60ca82064f26b8a533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2075108710010074$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2075108710010074$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Martynenko, Yu. G.</creatorcontrib><creatorcontrib>Merkuriev, I. V.</creatorcontrib><creatorcontrib>Podalkov, V. V.</creatorcontrib><title>Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode</title><title>Gyroscopy and navigation (Online)</title><addtitle>Gyroscopy Navig</addtitle><description>The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonator dynamics in slow variables measured by the device electronic circuit is investigated according to the Krylov-Bogolyubov averaging method. It is shown that the nonlinear elastic properties of the resonator material led to additional errors of the gyroscope, unstable branches of resonance curves, and quenching.</description><subject>Aerospace Technology and Astronautics</subject><subject>Engineering</subject><subject>Geophysics/Geodesy</subject><issn>2075-1087</issn><issn>2075-1109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKUfwM0_EFg_4scRlaeoxAE4R65jt66SOLLLIX-Po8IJCWml3Z3dWc0OQtcEbghh_PadgqwJKEkASkh-hhYzVBEC-vy3LvNLtMr5AAC0rFIhF-j1fhpMH2zG0WODUxh2uLQp9s7uzRCs6fBuSjHbODocBnzcO-xjsq6tChi6zhxDHHAfW3eFLrzpslv95CX6fHz4WD9Xm7enl_XdprIUGK-EAq2d41ZTpuq6ra3k3DNvBdWEKGOZ0NuWayk5Nd4LsEZRENxTsVWmZmyJyOlukZlzcr4ZU-hNmhoCzWxI88eQwqEnTh7nH11qDvErDUXmP6Rvd-thDg</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Martynenko, Yu. G.</creator><creator>Merkuriev, I. V.</creator><creator>Podalkov, V. V.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2010</creationdate><title>Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode</title><author>Martynenko, Yu. G. ; Merkuriev, I. V. ; Podalkov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2034-68099ee4c923855d5c744f3fc629118ac369bd497742aff60ca82064f26b8a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Engineering</topic><topic>Geophysics/Geodesy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martynenko, Yu. G.</creatorcontrib><creatorcontrib>Merkuriev, I. V.</creatorcontrib><creatorcontrib>Podalkov, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Gyroscopy and navigation (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martynenko, Yu. G.</au><au>Merkuriev, I. V.</au><au>Podalkov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode</atitle><jtitle>Gyroscopy and navigation (Online)</jtitle><stitle>Gyroscopy Navig</stitle><date>2010</date><risdate>2010</risdate><volume>1</volume><issue>1</issue><spage>43</spage><epage>51</epage><pages>43-51</pages><issn>2075-1087</issn><eissn>2075-1109</eissn><abstract>The nonlinear effects of a vibrating micromechanical gyroscope with a ring resonator supported by a flexible torsion system are considered. A mathematical model of the thin elastic resonator forced oscillations is derived to account for the nonlinear properties of the resonator material. The resonator dynamics in slow variables measured by the device electronic circuit is investigated according to the Krylov-Bogolyubov averaging method. It is shown that the nonlinear elastic properties of the resonator material led to additional errors of the gyroscope, unstable branches of resonance curves, and quenching.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S2075108710010074</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2075-1087
ispartof Gyroscopy and navigation (Online), 2010, Vol.1 (1), p.43-51
issn 2075-1087
2075-1109
language eng
recordid cdi_crossref_primary_10_1134_S2075108710010074
source SpringerLink Journals - AutoHoldings
subjects Aerospace Technology and Astronautics
Engineering
Geophysics/Geodesy
title Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20a%20ring%20micromechanical%20gyroscope%20in%20the%20forced-oscillation%20mode&rft.jtitle=Gyroscopy%20and%20navigation%20(Online)&rft.au=Martynenko,%20Yu.%20G.&rft.date=2010&rft.volume=1&rft.issue=1&rft.spage=43&rft.epage=51&rft.pages=43-51&rft.issn=2075-1087&rft.eissn=2075-1109&rft_id=info:doi/10.1134/S2075108710010074&rft_dat=%3Ccrossref_sprin%3E10_1134_S2075108710010074%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true