Catalytic production of olefins using natural halloysite nanotubes

The production of C 2 -C 4 olefins by deep catalytic cracking and the thermocontact pyrolysis of vacuum gas oil, commercial-grade cottonseed oil, and a vacuum gas oil-cottonseed oil 90: 10 mixture in the temperature range of 600–800°C is studied using natural halloysite extracted from kaolinite fiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis in industry 2014-07, Vol.6 (3), p.170-175
Hauptverfasser: Abbasov, V. M., Mamedova, T. A., Ismailov, E. G., Askerova, E. N., Teyubov, Kh. Sh, Gasankhanova, N. V., Alieva, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 3
container_start_page 170
container_title Catalysis in industry
container_volume 6
creator Abbasov, V. M.
Mamedova, T. A.
Ismailov, E. G.
Askerova, E. N.
Teyubov, Kh. Sh
Gasankhanova, N. V.
Alieva, S. K.
description The production of C 2 -C 4 olefins by deep catalytic cracking and the thermocontact pyrolysis of vacuum gas oil, commercial-grade cottonseed oil, and a vacuum gas oil-cottonseed oil 90: 10 mixture in the temperature range of 600–800°C is studied using natural halloysite extracted from kaolinite fields in the form of aluminosilicate sheets rolled in nanotubes. It is found that in the deep catalytic cracking of vacuum gas oil at 600°C using halloysite as a catalyst, the gain in the yield of ethylene is 6.4–10.1 wt %, compared to yields of this product when using ZSM-5 catalyst. Adding 10% commercial-grade cottonseed oil to the vacuum gas oil further increases the yield of ethylene by 2.2 wt % with a simultaneous 3.3 wt % rise in the yield of propylene. The cracking of pure cottonseed oil under identical conditions yields ethylene and propylene of 16.1 and 9.2 wt %, respectively. The possibility of using halloysite nanotubes as a heating surface for the thermal pyrolysis of the above feedstocks at temperatures of 700–800°C in order to obtain yields of C 2 -C 3 olefins exceeding those of identical products in industry, and of reusing halloysites in the thermoconversion of the studied feedstocks via their complete regeneration, is confirmed.
doi_str_mv 10.1134/S2070050414030027
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S2070050414030027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S2070050414030027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-5e34664a55261bf70941f452f83338a4c2c3998595359c8dbbe3018ab444f9413</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWGofwF1eYPTmbyZZavEPCi7U9ZBJk5oSk5JkFvP2Tqm4Ebybezmc73I4CF0TuCGE8ds3Ch2AAE44MADanaHFUWpACHH-ewO_RKtS9jAPVUp1coHu17rqMFVv8CGn7WiqTxEnh1OwzseCx-LjDkddx6wD_tQhpKn4amcppjoOtlyhC6dDsaufvUQfjw_v6-dm8_r0sr7bNIZKWRthGW9broWgLRlcB4oTxwV1kjEmNTfUMKWkUIIJZeR2GCwDIvXAOXezly0ROf01OZWSresP2X_pPPUE-mMP_Z8eZoaemDJ7487mfp_GHOeY_0Df9WJeIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalytic production of olefins using natural halloysite nanotubes</title><source>Springer Nature - Complete Springer Journals</source><creator>Abbasov, V. M. ; Mamedova, T. A. ; Ismailov, E. G. ; Askerova, E. N. ; Teyubov, Kh. Sh ; Gasankhanova, N. V. ; Alieva, S. K.</creator><creatorcontrib>Abbasov, V. M. ; Mamedova, T. A. ; Ismailov, E. G. ; Askerova, E. N. ; Teyubov, Kh. Sh ; Gasankhanova, N. V. ; Alieva, S. K.</creatorcontrib><description>The production of C 2 -C 4 olefins by deep catalytic cracking and the thermocontact pyrolysis of vacuum gas oil, commercial-grade cottonseed oil, and a vacuum gas oil-cottonseed oil 90: 10 mixture in the temperature range of 600–800°C is studied using natural halloysite extracted from kaolinite fields in the form of aluminosilicate sheets rolled in nanotubes. It is found that in the deep catalytic cracking of vacuum gas oil at 600°C using halloysite as a catalyst, the gain in the yield of ethylene is 6.4–10.1 wt %, compared to yields of this product when using ZSM-5 catalyst. Adding 10% commercial-grade cottonseed oil to the vacuum gas oil further increases the yield of ethylene by 2.2 wt % with a simultaneous 3.3 wt % rise in the yield of propylene. The cracking of pure cottonseed oil under identical conditions yields ethylene and propylene of 16.1 and 9.2 wt %, respectively. The possibility of using halloysite nanotubes as a heating surface for the thermal pyrolysis of the above feedstocks at temperatures of 700–800°C in order to obtain yields of C 2 -C 3 olefins exceeding those of identical products in industry, and of reusing halloysites in the thermoconversion of the studied feedstocks via their complete regeneration, is confirmed.</description><identifier>ISSN: 2070-0504</identifier><identifier>EISSN: 2070-0555</identifier><identifier>DOI: 10.1134/S2070050414030027</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Catalysis ; Catalysis and Nanotechnologies ; Chemistry ; Chemistry and Materials Science</subject><ispartof>Catalysis in industry, 2014-07, Vol.6 (3), p.170-175</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-5e34664a55261bf70941f452f83338a4c2c3998595359c8dbbe3018ab444f9413</citedby><cites>FETCH-LOGICAL-c288t-5e34664a55261bf70941f452f83338a4c2c3998595359c8dbbe3018ab444f9413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070050414030027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070050414030027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abbasov, V. M.</creatorcontrib><creatorcontrib>Mamedova, T. A.</creatorcontrib><creatorcontrib>Ismailov, E. G.</creatorcontrib><creatorcontrib>Askerova, E. N.</creatorcontrib><creatorcontrib>Teyubov, Kh. Sh</creatorcontrib><creatorcontrib>Gasankhanova, N. V.</creatorcontrib><creatorcontrib>Alieva, S. K.</creatorcontrib><title>Catalytic production of olefins using natural halloysite nanotubes</title><title>Catalysis in industry</title><addtitle>Catal. Ind</addtitle><description>The production of C 2 -C 4 olefins by deep catalytic cracking and the thermocontact pyrolysis of vacuum gas oil, commercial-grade cottonseed oil, and a vacuum gas oil-cottonseed oil 90: 10 mixture in the temperature range of 600–800°C is studied using natural halloysite extracted from kaolinite fields in the form of aluminosilicate sheets rolled in nanotubes. It is found that in the deep catalytic cracking of vacuum gas oil at 600°C using halloysite as a catalyst, the gain in the yield of ethylene is 6.4–10.1 wt %, compared to yields of this product when using ZSM-5 catalyst. Adding 10% commercial-grade cottonseed oil to the vacuum gas oil further increases the yield of ethylene by 2.2 wt % with a simultaneous 3.3 wt % rise in the yield of propylene. The cracking of pure cottonseed oil under identical conditions yields ethylene and propylene of 16.1 and 9.2 wt %, respectively. The possibility of using halloysite nanotubes as a heating surface for the thermal pyrolysis of the above feedstocks at temperatures of 700–800°C in order to obtain yields of C 2 -C 3 olefins exceeding those of identical products in industry, and of reusing halloysites in the thermoconversion of the studied feedstocks via their complete regeneration, is confirmed.</description><subject>Catalysis</subject><subject>Catalysis and Nanotechnologies</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><issn>2070-0504</issn><issn>2070-0555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWGofwF1eYPTmbyZZavEPCi7U9ZBJk5oSk5JkFvP2Tqm4Ebybezmc73I4CF0TuCGE8ds3Ch2AAE44MADanaHFUWpACHH-ewO_RKtS9jAPVUp1coHu17rqMFVv8CGn7WiqTxEnh1OwzseCx-LjDkddx6wD_tQhpKn4amcppjoOtlyhC6dDsaufvUQfjw_v6-dm8_r0sr7bNIZKWRthGW9broWgLRlcB4oTxwV1kjEmNTfUMKWkUIIJZeR2GCwDIvXAOXezly0ROf01OZWSresP2X_pPPUE-mMP_Z8eZoaemDJ7487mfp_GHOeY_0Df9WJeIw</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Abbasov, V. M.</creator><creator>Mamedova, T. A.</creator><creator>Ismailov, E. G.</creator><creator>Askerova, E. N.</creator><creator>Teyubov, Kh. Sh</creator><creator>Gasankhanova, N. V.</creator><creator>Alieva, S. K.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140701</creationdate><title>Catalytic production of olefins using natural halloysite nanotubes</title><author>Abbasov, V. M. ; Mamedova, T. A. ; Ismailov, E. G. ; Askerova, E. N. ; Teyubov, Kh. Sh ; Gasankhanova, N. V. ; Alieva, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-5e34664a55261bf70941f452f83338a4c2c3998595359c8dbbe3018ab444f9413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysis</topic><topic>Catalysis and Nanotechnologies</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbasov, V. M.</creatorcontrib><creatorcontrib>Mamedova, T. A.</creatorcontrib><creatorcontrib>Ismailov, E. G.</creatorcontrib><creatorcontrib>Askerova, E. N.</creatorcontrib><creatorcontrib>Teyubov, Kh. Sh</creatorcontrib><creatorcontrib>Gasankhanova, N. V.</creatorcontrib><creatorcontrib>Alieva, S. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Catalysis in industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbasov, V. M.</au><au>Mamedova, T. A.</au><au>Ismailov, E. G.</au><au>Askerova, E. N.</au><au>Teyubov, Kh. Sh</au><au>Gasankhanova, N. V.</au><au>Alieva, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic production of olefins using natural halloysite nanotubes</atitle><jtitle>Catalysis in industry</jtitle><stitle>Catal. Ind</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>6</volume><issue>3</issue><spage>170</spage><epage>175</epage><pages>170-175</pages><issn>2070-0504</issn><eissn>2070-0555</eissn><abstract>The production of C 2 -C 4 olefins by deep catalytic cracking and the thermocontact pyrolysis of vacuum gas oil, commercial-grade cottonseed oil, and a vacuum gas oil-cottonseed oil 90: 10 mixture in the temperature range of 600–800°C is studied using natural halloysite extracted from kaolinite fields in the form of aluminosilicate sheets rolled in nanotubes. It is found that in the deep catalytic cracking of vacuum gas oil at 600°C using halloysite as a catalyst, the gain in the yield of ethylene is 6.4–10.1 wt %, compared to yields of this product when using ZSM-5 catalyst. Adding 10% commercial-grade cottonseed oil to the vacuum gas oil further increases the yield of ethylene by 2.2 wt % with a simultaneous 3.3 wt % rise in the yield of propylene. The cracking of pure cottonseed oil under identical conditions yields ethylene and propylene of 16.1 and 9.2 wt %, respectively. The possibility of using halloysite nanotubes as a heating surface for the thermal pyrolysis of the above feedstocks at temperatures of 700–800°C in order to obtain yields of C 2 -C 3 olefins exceeding those of identical products in industry, and of reusing halloysites in the thermoconversion of the studied feedstocks via their complete regeneration, is confirmed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070050414030027</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2070-0504
ispartof Catalysis in industry, 2014-07, Vol.6 (3), p.170-175
issn 2070-0504
2070-0555
language eng
recordid cdi_crossref_primary_10_1134_S2070050414030027
source Springer Nature - Complete Springer Journals
subjects Catalysis
Catalysis and Nanotechnologies
Chemistry
Chemistry and Materials Science
title Catalytic production of olefins using natural halloysite nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20production%20of%20olefins%20using%20natural%20halloysite%20nanotubes&rft.jtitle=Catalysis%20in%20industry&rft.au=Abbasov,%20V.%20M.&rft.date=2014-07-01&rft.volume=6&rft.issue=3&rft.spage=170&rft.epage=175&rft.pages=170-175&rft.issn=2070-0504&rft.eissn=2070-0555&rft_id=info:doi/10.1134/S2070050414030027&rft_dat=%3Ccrossref_sprin%3E10_1134_S2070050414030027%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true