Even- and odd-parity kinetic equations of particle transport. 1: Algebraic and centered forms of the scattering integral

We consider an equivalent formulation of the linear kinetic transport equation for neutral particles (neutrons, photons) as a system of two equations for even and odd parts of the distribution function. The particle scattering integral of even- and odd-parity transport equations is converted into a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical models and computer simulations 2014-09, Vol.6 (5), p.465-479
1. Verfasser: Shilkov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 5
container_start_page 465
container_title Mathematical models and computer simulations
container_volume 6
creator Shilkov, A. V.
description We consider an equivalent formulation of the linear kinetic transport equation for neutral particles (neutrons, photons) as a system of two equations for even and odd parts of the distribution function. The particle scattering integral of even- and odd-parity transport equations is converted into a non-linear algebraic form and into a centered form. In the algebraic form of the integral we clearly identify the net result of two opposite processes, i.e., particle scattering from a beam and into the beam. In the centered form of the integral the principal terms of scattering processes are canceled out. An iterative method is proposed for the solution of the system of even- and odd-parity equations with these forms of the scattering integral. Convergence of iterations is studied for a one-dimensional plane problem.
doi_str_mv 10.1134/S2070048214050123
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S2070048214050123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S2070048214050123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2033-47fb40d6df98fcd07c452d035638de6f1d65cdf75f7da17c5d5e94a19f01a5203</originalsourceid><addsrcrecordid>eNp9UMtKA0EQHETBoPkAb_MDG3te-_AWQnxAwIN6XibziBM3s-vMRMzfO2vEi2BfuqnqKopC6IrAjBDGr58oVAC8poSDAELZCZqMUAG8gdPfu6bnaBrjFvIwWtWsnqDP5YfxBZZe417rYpDBpQN-c94kp7B538vkeh9xb3HmMtYZnIL0cehDmmFyg-fdxqyDzN-jiTI-mWA0tn3YfcvSq8FRyZRh5zfYZX4TZHeJzqzsopn-7Av0crt8XtwXq8e7h8V8VSgKjBW8smsOutS2qa3SUCkuqAYmSlZrU1qiS6G0rYSttCSVElqYhkvSWCBSZIsLRI6-KvQxBmPbIbidDIeWQDu21_5pL2voUROHMbMJ7bbfB59j_iP6Apjncho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Even- and odd-parity kinetic equations of particle transport. 1: Algebraic and centered forms of the scattering integral</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shilkov, A. V.</creator><creatorcontrib>Shilkov, A. V.</creatorcontrib><description>We consider an equivalent formulation of the linear kinetic transport equation for neutral particles (neutrons, photons) as a system of two equations for even and odd parts of the distribution function. The particle scattering integral of even- and odd-parity transport equations is converted into a non-linear algebraic form and into a centered form. In the algebraic form of the integral we clearly identify the net result of two opposite processes, i.e., particle scattering from a beam and into the beam. In the centered form of the integral the principal terms of scattering processes are canceled out. An iterative method is proposed for the solution of the system of even- and odd-parity equations with these forms of the scattering integral. Convergence of iterations is studied for a one-dimensional plane problem.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048214050123</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Simulation and Modeling</subject><ispartof>Mathematical models and computer simulations, 2014-09, Vol.6 (5), p.465-479</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2033-47fb40d6df98fcd07c452d035638de6f1d65cdf75f7da17c5d5e94a19f01a5203</citedby><cites>FETCH-LOGICAL-c2033-47fb40d6df98fcd07c452d035638de6f1d65cdf75f7da17c5d5e94a19f01a5203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070048214050123$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070048214050123$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shilkov, A. V.</creatorcontrib><title>Even- and odd-parity kinetic equations of particle transport. 1: Algebraic and centered forms of the scattering integral</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>We consider an equivalent formulation of the linear kinetic transport equation for neutral particles (neutrons, photons) as a system of two equations for even and odd parts of the distribution function. The particle scattering integral of even- and odd-parity transport equations is converted into a non-linear algebraic form and into a centered form. In the algebraic form of the integral we clearly identify the net result of two opposite processes, i.e., particle scattering from a beam and into the beam. In the centered form of the integral the principal terms of scattering processes are canceled out. An iterative method is proposed for the solution of the system of even- and odd-parity equations with these forms of the scattering integral. Convergence of iterations is studied for a one-dimensional plane problem.</description><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Simulation and Modeling</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKA0EQHETBoPkAb_MDG3te-_AWQnxAwIN6XibziBM3s-vMRMzfO2vEi2BfuqnqKopC6IrAjBDGr58oVAC8poSDAELZCZqMUAG8gdPfu6bnaBrjFvIwWtWsnqDP5YfxBZZe417rYpDBpQN-c94kp7B538vkeh9xb3HmMtYZnIL0cehDmmFyg-fdxqyDzN-jiTI-mWA0tn3YfcvSq8FRyZRh5zfYZX4TZHeJzqzsopn-7Av0crt8XtwXq8e7h8V8VSgKjBW8smsOutS2qa3SUCkuqAYmSlZrU1qiS6G0rYSttCSVElqYhkvSWCBSZIsLRI6-KvQxBmPbIbidDIeWQDu21_5pL2voUROHMbMJ7bbfB59j_iP6Apjncho</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Shilkov, A. V.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140901</creationdate><title>Even- and odd-parity kinetic equations of particle transport. 1: Algebraic and centered forms of the scattering integral</title><author>Shilkov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2033-47fb40d6df98fcd07c452d035638de6f1d65cdf75f7da17c5d5e94a19f01a5203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilkov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilkov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Even- and odd-parity kinetic equations of particle transport. 1: Algebraic and centered forms of the scattering integral</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>6</volume><issue>5</issue><spage>465</spage><epage>479</epage><pages>465-479</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>We consider an equivalent formulation of the linear kinetic transport equation for neutral particles (neutrons, photons) as a system of two equations for even and odd parts of the distribution function. The particle scattering integral of even- and odd-parity transport equations is converted into a non-linear algebraic form and into a centered form. In the algebraic form of the integral we clearly identify the net result of two opposite processes, i.e., particle scattering from a beam and into the beam. In the centered form of the integral the principal terms of scattering processes are canceled out. An iterative method is proposed for the solution of the system of even- and odd-parity equations with these forms of the scattering integral. Convergence of iterations is studied for a one-dimensional plane problem.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070048214050123</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2070-0482
ispartof Mathematical models and computer simulations, 2014-09, Vol.6 (5), p.465-479
issn 2070-0482
2070-0490
language eng
recordid cdi_crossref_primary_10_1134_S2070048214050123
source SpringerLink Journals - AutoHoldings
subjects Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Simulation and Modeling
title Even- and odd-parity kinetic equations of particle transport. 1: Algebraic and centered forms of the scattering integral
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Even-%20and%20odd-parity%20kinetic%20equations%20of%20particle%20transport.%201:%20Algebraic%20and%20centered%20forms%20of%20the%20scattering%20integral&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Shilkov,%20A.%20V.&rft.date=2014-09-01&rft.volume=6&rft.issue=5&rft.spage=465&rft.epage=479&rft.pages=465-479&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048214050123&rft_dat=%3Ccrossref_sprin%3E10_1134_S2070048214050123%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true