Simulation of the evolution of autonomous adaptive agents

A model of evolving populations of self-learning agents is studied, and the interaction between learning and evolution is analyzed. Each agent is equipped with a neural network (NN) adaptive critic design for behavioral adaptation. The model is investigated by an example of a simple agent-broker tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical models and computer simulations 2009-02, Vol.1 (1), p.156-164
Hauptverfasser: Mosalov, O. P., Red’ko, V. G., Prokhorov, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 1
container_start_page 156
container_title Mathematical models and computer simulations
container_volume 1
creator Mosalov, O. P.
Red’ko, V. G.
Prokhorov, D. V.
description A model of evolving populations of self-learning agents is studied, and the interaction between learning and evolution is analyzed. Each agent is equipped with a neural network (NN) adaptive critic design for behavioral adaptation. The model is investigated by an example of a simple agent-broker that predicts stock price changes and uses these predictions for choosing strategies. Three variants of the model are compared, which include either learning and evolution, or only evolution, or only learning. It is shown that the model may exhibit the Baldwin effect; i.e., initially acquired adaptive policy of agents becomes inheritable during evolution. The behavior of the model agents is compared with the searching behavior of simple animals.
doi_str_mv 10.1134/S2070048209010177
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S2070048209010177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S2070048209010177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1557-d7275f8d1602fae4f1701ce4910e5845a82d84f61a86d641051997d49bcb071c3</originalsourceid><addsrcrecordid>eNp9j81qwzAQhEVpoSHNA_TmF3C7K0uWdCyhfxDoIe1ZKPpJHWwrSHagb1-HtLkUupdZhv2GHUJuEe4QK3a_piAAmKSgAAGFuCCzo1UCU3B53iW9JoucdzBNRYWs5IyoddONrRma2BcxFMOnL_whtuOvYcYh9rGLYy6MM_uhOfjCbH0_5BtyFUyb_eJH5-Tj6fF9-VKu3p5flw-r0iLnonSCCh6kwxpoMJ4FFIDWM4XguWTcSOokCzUaWbuaIXBUSjimNnYDAm01J3jKtSnmnHzQ-9R0Jn1pBH2sr__Unxh6YvJ022990rs4pn568x_oG8hcWsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of the evolution of autonomous adaptive agents</title><source>Springer Nature - Complete Springer Journals</source><creator>Mosalov, O. P. ; Red’ko, V. G. ; Prokhorov, D. V.</creator><creatorcontrib>Mosalov, O. P. ; Red’ko, V. G. ; Prokhorov, D. V.</creatorcontrib><description>A model of evolving populations of self-learning agents is studied, and the interaction between learning and evolution is analyzed. Each agent is equipped with a neural network (NN) adaptive critic design for behavioral adaptation. The model is investigated by an example of a simple agent-broker that predicts stock price changes and uses these predictions for choosing strategies. Three variants of the model are compared, which include either learning and evolution, or only evolution, or only learning. It is shown that the model may exhibit the Baldwin effect; i.e., initially acquired adaptive policy of agents becomes inheritable during evolution. The behavior of the model agents is compared with the searching behavior of simple animals.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048209010177</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Simulation and Modeling</subject><ispartof>Mathematical models and computer simulations, 2009-02, Vol.1 (1), p.156-164</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1557-d7275f8d1602fae4f1701ce4910e5845a82d84f61a86d641051997d49bcb071c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070048209010177$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070048209010177$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mosalov, O. P.</creatorcontrib><creatorcontrib>Red’ko, V. G.</creatorcontrib><creatorcontrib>Prokhorov, D. V.</creatorcontrib><title>Simulation of the evolution of autonomous adaptive agents</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>A model of evolving populations of self-learning agents is studied, and the interaction between learning and evolution is analyzed. Each agent is equipped with a neural network (NN) adaptive critic design for behavioral adaptation. The model is investigated by an example of a simple agent-broker that predicts stock price changes and uses these predictions for choosing strategies. Three variants of the model are compared, which include either learning and evolution, or only evolution, or only learning. It is shown that the model may exhibit the Baldwin effect; i.e., initially acquired adaptive policy of agents becomes inheritable during evolution. The behavior of the model agents is compared with the searching behavior of simple animals.</description><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Simulation and Modeling</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9j81qwzAQhEVpoSHNA_TmF3C7K0uWdCyhfxDoIe1ZKPpJHWwrSHagb1-HtLkUupdZhv2GHUJuEe4QK3a_piAAmKSgAAGFuCCzo1UCU3B53iW9JoucdzBNRYWs5IyoddONrRma2BcxFMOnL_whtuOvYcYh9rGLYy6MM_uhOfjCbH0_5BtyFUyb_eJH5-Tj6fF9-VKu3p5flw-r0iLnonSCCh6kwxpoMJ4FFIDWM4XguWTcSOokCzUaWbuaIXBUSjimNnYDAm01J3jKtSnmnHzQ-9R0Jn1pBH2sr__Unxh6YvJ022990rs4pn568x_oG8hcWsM</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Mosalov, O. P.</creator><creator>Red’ko, V. G.</creator><creator>Prokhorov, D. V.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090201</creationdate><title>Simulation of the evolution of autonomous adaptive agents</title><author>Mosalov, O. P. ; Red’ko, V. G. ; Prokhorov, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1557-d7275f8d1602fae4f1701ce4910e5845a82d84f61a86d641051997d49bcb071c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosalov, O. P.</creatorcontrib><creatorcontrib>Red’ko, V. G.</creatorcontrib><creatorcontrib>Prokhorov, D. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosalov, O. P.</au><au>Red’ko, V. G.</au><au>Prokhorov, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of the evolution of autonomous adaptive agents</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>1</volume><issue>1</issue><spage>156</spage><epage>164</epage><pages>156-164</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>A model of evolving populations of self-learning agents is studied, and the interaction between learning and evolution is analyzed. Each agent is equipped with a neural network (NN) adaptive critic design for behavioral adaptation. The model is investigated by an example of a simple agent-broker that predicts stock price changes and uses these predictions for choosing strategies. Three variants of the model are compared, which include either learning and evolution, or only evolution, or only learning. It is shown that the model may exhibit the Baldwin effect; i.e., initially acquired adaptive policy of agents becomes inheritable during evolution. The behavior of the model agents is compared with the searching behavior of simple animals.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S2070048209010177</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2070-0482
ispartof Mathematical models and computer simulations, 2009-02, Vol.1 (1), p.156-164
issn 2070-0482
2070-0490
language eng
recordid cdi_crossref_primary_10_1134_S2070048209010177
source Springer Nature - Complete Springer Journals
subjects Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Simulation and Modeling
title Simulation of the evolution of autonomous adaptive agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20the%20evolution%20of%20autonomous%20adaptive%20agents&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Mosalov,%20O.%20P.&rft.date=2009-02-01&rft.volume=1&rft.issue=1&rft.spage=156&rft.epage=164&rft.pages=156-164&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048209010177&rft_dat=%3Ccrossref_sprin%3E10_1134_S2070048209010177%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true