Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media
This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive i...
Gespeichert in:
Veröffentlicht in: | Numerical analysis and applications 2012-04, Vol.5 (2), p.144-149 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 2 |
container_start_page | 144 |
container_title | Numerical analysis and applications |
container_volume | 5 |
creator | Vishnevsky, D. M. Lisitsa, V. V. Tcheverda, V. A. |
description | This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive in terms of computational efficiency. In the main part of the model, a highly efficient standard staggered grid scheme is proposed. The two schemes are coupled to ensure convergence of the reflection/propagation coefficients with a prescribed order. The algorithm combines the universality of the Lebedev scheme and the efficiency of the standard staggered grid scheme. |
doi_str_mv | 10.1134/S1995423912020073 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995423912020073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995423912020073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-22bc6be09f66d31bd44586269db414fede75065dad4bc72310444824cc77f4fa3</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWGofwLu8wGp-ZrPdSyn1BwpeqNdLNpnYlG6yJKni27ul4o3g3MxwZr7DcAi55uyGcwm3L7xtaxCy5YIJxhp5RmZHqQIBzfnvLNtLssh5x6aSolmCmhG_ds4bj6FQ54MvWFnvHCYMBulw2BdfZbPFAakexxS12dISadkizX5a6-JjoNHRjD4P3tBP_YGZ-kB18DmWFMdJHNB6fUUunN5nXPz0OXm7X7-uHqvN88PT6m5TGQGsVEL0RvXIWqeUlby3APVSCdXaHjg4tNjUTNVWW-hNIyRnALAUYEzTOHBazgk_-ZoUc07oujH5QaevjrPuGFf3J66JEScmT7fhHVO3i4cUpjf_gb4BUrlt1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media</title><source>Springer Nature - Complete Springer Journals</source><creator>Vishnevsky, D. M. ; Lisitsa, V. V. ; Tcheverda, V. A.</creator><creatorcontrib>Vishnevsky, D. M. ; Lisitsa, V. V. ; Tcheverda, V. A.</creatorcontrib><description>This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive in terms of computational efficiency. In the main part of the model, a highly efficient standard staggered grid scheme is proposed. The two schemes are coupled to ensure convergence of the reflection/propagation coefficients with a prescribed order. The algorithm combines the universality of the Lebedev scheme and the efficiency of the standard staggered grid scheme.</description><identifier>ISSN: 1995-4239</identifier><identifier>EISSN: 1995-4247</identifier><identifier>DOI: 10.1134/S1995423912020073</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Mathematics ; Mathematics and Statistics ; Numerical Analysis</subject><ispartof>Numerical analysis and applications, 2012-04, Vol.5 (2), p.144-149</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-22bc6be09f66d31bd44586269db414fede75065dad4bc72310444824cc77f4fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995423912020073$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995423912020073$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Vishnevsky, D. M.</creatorcontrib><creatorcontrib>Lisitsa, V. V.</creatorcontrib><creatorcontrib>Tcheverda, V. A.</creatorcontrib><title>Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media</title><title>Numerical analysis and applications</title><addtitle>Numer. Analys. Appl</addtitle><description>This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive in terms of computational efficiency. In the main part of the model, a highly efficient standard staggered grid scheme is proposed. The two schemes are coupled to ensure convergence of the reflection/propagation coefficients with a prescribed order. The algorithm combines the universality of the Lebedev scheme and the efficiency of the standard staggered grid scheme.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><issn>1995-4239</issn><issn>1995-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWGofwLu8wGp-ZrPdSyn1BwpeqNdLNpnYlG6yJKni27ul4o3g3MxwZr7DcAi55uyGcwm3L7xtaxCy5YIJxhp5RmZHqQIBzfnvLNtLssh5x6aSolmCmhG_ds4bj6FQ54MvWFnvHCYMBulw2BdfZbPFAakexxS12dISadkizX5a6-JjoNHRjD4P3tBP_YGZ-kB18DmWFMdJHNB6fUUunN5nXPz0OXm7X7-uHqvN88PT6m5TGQGsVEL0RvXIWqeUlby3APVSCdXaHjg4tNjUTNVWW-hNIyRnALAUYEzTOHBazgk_-ZoUc07oujH5QaevjrPuGFf3J66JEScmT7fhHVO3i4cUpjf_gb4BUrlt1Q</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Vishnevsky, D. M.</creator><creator>Lisitsa, V. V.</creator><creator>Tcheverda, V. A.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120401</creationdate><title>Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media</title><author>Vishnevsky, D. M. ; Lisitsa, V. V. ; Tcheverda, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-22bc6be09f66d31bd44586269db414fede75065dad4bc72310444824cc77f4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishnevsky, D. M.</creatorcontrib><creatorcontrib>Lisitsa, V. V.</creatorcontrib><creatorcontrib>Tcheverda, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishnevsky, D. M.</au><au>Lisitsa, V. V.</au><au>Tcheverda, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media</atitle><jtitle>Numerical analysis and applications</jtitle><stitle>Numer. Analys. Appl</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>5</volume><issue>2</issue><spage>144</spage><epage>149</epage><pages>144-149</pages><issn>1995-4239</issn><eissn>1995-4247</eissn><abstract>This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive in terms of computational efficiency. In the main part of the model, a highly efficient standard staggered grid scheme is proposed. The two schemes are coupled to ensure convergence of the reflection/propagation coefficients with a prescribed order. The algorithm combines the universality of the Lebedev scheme and the efficiency of the standard staggered grid scheme.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1995423912020073</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-4239 |
ispartof | Numerical analysis and applications, 2012-04, Vol.5 (2), p.144-149 |
issn | 1995-4239 1995-4247 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1995423912020073 |
source | Springer Nature - Complete Springer Journals |
subjects | Mathematics Mathematics and Statistics Numerical Analysis |
title | Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20finite-difference%20multi-scheme%20approach%20to%20the%20simulation%20of%20seismic%20waves%20in%20anisotropic%20media&rft.jtitle=Numerical%20analysis%20and%20applications&rft.au=Vishnevsky,%20D.%20M.&rft.date=2012-04-01&rft.volume=5&rft.issue=2&rft.spage=144&rft.epage=149&rft.pages=144-149&rft.issn=1995-4239&rft.eissn=1995-4247&rft_id=info:doi/10.1134/S1995423912020073&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995423912020073%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |