Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media

This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical analysis and applications 2012-04, Vol.5 (2), p.144-149
Hauptverfasser: Vishnevsky, D. M., Lisitsa, V. V., Tcheverda, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue 2
container_start_page 144
container_title Numerical analysis and applications
container_volume 5
creator Vishnevsky, D. M.
Lisitsa, V. V.
Tcheverda, V. A.
description This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive in terms of computational efficiency. In the main part of the model, a highly efficient standard staggered grid scheme is proposed. The two schemes are coupled to ensure convergence of the reflection/propagation coefficients with a prescribed order. The algorithm combines the universality of the Lebedev scheme and the efficiency of the standard staggered grid scheme.
doi_str_mv 10.1134/S1995423912020073
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995423912020073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995423912020073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-22bc6be09f66d31bd44586269db414fede75065dad4bc72310444824cc77f4fa3</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWGofwLu8wGp-ZrPdSyn1BwpeqNdLNpnYlG6yJKni27ul4o3g3MxwZr7DcAi55uyGcwm3L7xtaxCy5YIJxhp5RmZHqQIBzfnvLNtLssh5x6aSolmCmhG_ds4bj6FQ54MvWFnvHCYMBulw2BdfZbPFAakexxS12dISadkizX5a6-JjoNHRjD4P3tBP_YGZ-kB18DmWFMdJHNB6fUUunN5nXPz0OXm7X7-uHqvN88PT6m5TGQGsVEL0RvXIWqeUlby3APVSCdXaHjg4tNjUTNVWW-hNIyRnALAUYEzTOHBazgk_-ZoUc07oujH5QaevjrPuGFf3J66JEScmT7fhHVO3i4cUpjf_gb4BUrlt1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media</title><source>Springer Nature - Complete Springer Journals</source><creator>Vishnevsky, D. M. ; Lisitsa, V. V. ; Tcheverda, V. A.</creator><creatorcontrib>Vishnevsky, D. M. ; Lisitsa, V. V. ; Tcheverda, V. A.</creatorcontrib><description>This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive in terms of computational efficiency. In the main part of the model, a highly efficient standard staggered grid scheme is proposed. The two schemes are coupled to ensure convergence of the reflection/propagation coefficients with a prescribed order. The algorithm combines the universality of the Lebedev scheme and the efficiency of the standard staggered grid scheme.</description><identifier>ISSN: 1995-4239</identifier><identifier>EISSN: 1995-4247</identifier><identifier>DOI: 10.1134/S1995423912020073</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Mathematics ; Mathematics and Statistics ; Numerical Analysis</subject><ispartof>Numerical analysis and applications, 2012-04, Vol.5 (2), p.144-149</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-22bc6be09f66d31bd44586269db414fede75065dad4bc72310444824cc77f4fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995423912020073$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995423912020073$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Vishnevsky, D. M.</creatorcontrib><creatorcontrib>Lisitsa, V. V.</creatorcontrib><creatorcontrib>Tcheverda, V. A.</creatorcontrib><title>Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media</title><title>Numerical analysis and applications</title><addtitle>Numer. Analys. Appl</addtitle><description>This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive in terms of computational efficiency. In the main part of the model, a highly efficient standard staggered grid scheme is proposed. The two schemes are coupled to ensure convergence of the reflection/propagation coefficients with a prescribed order. The algorithm combines the universality of the Lebedev scheme and the efficiency of the standard staggered grid scheme.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><issn>1995-4239</issn><issn>1995-4247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWGofwLu8wGp-ZrPdSyn1BwpeqNdLNpnYlG6yJKni27ul4o3g3MxwZr7DcAi55uyGcwm3L7xtaxCy5YIJxhp5RmZHqQIBzfnvLNtLssh5x6aSolmCmhG_ds4bj6FQ54MvWFnvHCYMBulw2BdfZbPFAakexxS12dISadkizX5a6-JjoNHRjD4P3tBP_YGZ-kB18DmWFMdJHNB6fUUunN5nXPz0OXm7X7-uHqvN88PT6m5TGQGsVEL0RvXIWqeUlby3APVSCdXaHjg4tNjUTNVWW-hNIyRnALAUYEzTOHBazgk_-ZoUc07oujH5QaevjrPuGFf3J66JEScmT7fhHVO3i4cUpjf_gb4BUrlt1Q</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Vishnevsky, D. M.</creator><creator>Lisitsa, V. V.</creator><creator>Tcheverda, V. A.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120401</creationdate><title>Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media</title><author>Vishnevsky, D. M. ; Lisitsa, V. V. ; Tcheverda, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-22bc6be09f66d31bd44586269db414fede75065dad4bc72310444824cc77f4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vishnevsky, D. M.</creatorcontrib><creatorcontrib>Lisitsa, V. V.</creatorcontrib><creatorcontrib>Tcheverda, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vishnevsky, D. M.</au><au>Lisitsa, V. V.</au><au>Tcheverda, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media</atitle><jtitle>Numerical analysis and applications</jtitle><stitle>Numer. Analys. Appl</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>5</volume><issue>2</issue><spage>144</spage><epage>149</epage><pages>144-149</pages><issn>1995-4239</issn><eissn>1995-4247</eissn><abstract>This paper presents an original multi-scheme approach to the numerical simulation of seismic wave propagation in models with anisotropic formations. To simulate wave propagation in the anisotropic parts of the model, the Lebedev scheme is used. This scheme is rather universal, but highly expensive in terms of computational efficiency. In the main part of the model, a highly efficient standard staggered grid scheme is proposed. The two schemes are coupled to ensure convergence of the reflection/propagation coefficients with a prescribed order. The algorithm combines the universality of the Lebedev scheme and the efficiency of the standard staggered grid scheme.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1995423912020073</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-4239
ispartof Numerical analysis and applications, 2012-04, Vol.5 (2), p.144-149
issn 1995-4239
1995-4247
language eng
recordid cdi_crossref_primary_10_1134_S1995423912020073
source Springer Nature - Complete Springer Journals
subjects Mathematics
Mathematics and Statistics
Numerical Analysis
title Efficient finite-difference multi-scheme approach to the simulation of seismic waves in anisotropic media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20finite-difference%20multi-scheme%20approach%20to%20the%20simulation%20of%20seismic%20waves%20in%20anisotropic%20media&rft.jtitle=Numerical%20analysis%20and%20applications&rft.au=Vishnevsky,%20D.%20M.&rft.date=2012-04-01&rft.volume=5&rft.issue=2&rft.spage=144&rft.epage=149&rft.pages=144-149&rft.issn=1995-4239&rft.eissn=1995-4247&rft_id=info:doi/10.1134/S1995423912020073&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995423912020073%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true