Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory
In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution arou...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2020-10, Vol.41 (10), p.2076-2082 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2082 |
---|---|
container_issue | 10 |
container_start_page | 2076 |
container_title | Lobachevskii journal of mathematics |
container_volume | 41 |
creator | Solyaev, Y. Ustenko, A. Lykosova, E. |
description | In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution around the supproted end of the cantilever taking into account the extended number of boundary conditions, which cannot be captured in classical models. |
doi_str_mv | 10.1134/S1995080220100157 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995080220100157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995080220100157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-ac400d204cbf3384b4bc8950151682668b04d3d73741222a75f41d7618de01893</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gLf9A9GZzSbZHEupVahUtOIxbHYnuiUmshuF-OvdWm8FTzPwvjfMe4xdIlwhpvL6CcsyAwVCAAJgVhyxCSpUSVnm4jjuUU52-ik7C2ELEczzfMJeHqlxHVk-63Q7Bhd43_AHR989tWQG7wy_d8b3RneDa-mLfOCu40uvraNu4ItfKsI6DM64YeSbN-r9eM5OGt0GuvibU_Z8s9jMb5PVenk3n60SI5QaEm0kgBUgTd2kqZK1rI2KQTDDXMUPVQ3SprZIC4lCCF1kjURb5KgsAaoynTLc340_huCpqT68e9d-rBCqXTPVQTPRI_aeENnulXy17T99zB_-Mf0A9Y5lVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory</title><source>SpringerLink Journals</source><creator>Solyaev, Y. ; Ustenko, A. ; Lykosova, E.</creator><creatorcontrib>Solyaev, Y. ; Ustenko, A. ; Lykosova, E.</creatorcontrib><description>In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution around the supproted end of the cantilever taking into account the extended number of boundary conditions, which cannot be captured in classical models.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080220100157</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2020-10, Vol.41 (10), p.2076-2082</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-ac400d204cbf3384b4bc8950151682668b04d3d73741222a75f41d7618de01893</citedby><cites>FETCH-LOGICAL-c288t-ac400d204cbf3384b4bc8950151682668b04d3d73741222a75f41d7618de01893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080220100157$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080220100157$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Solyaev, Y.</creatorcontrib><creatorcontrib>Ustenko, A.</creatorcontrib><creatorcontrib>Lykosova, E.</creatorcontrib><title>Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution around the supproted end of the cantilever taking into account the extended number of boundary conditions, which cannot be captured in classical models.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZ_gLf9A9GZzSbZHEupVahUtOIxbHYnuiUmshuF-OvdWm8FTzPwvjfMe4xdIlwhpvL6CcsyAwVCAAJgVhyxCSpUSVnm4jjuUU52-ik7C2ELEczzfMJeHqlxHVk-63Q7Bhd43_AHR989tWQG7wy_d8b3RneDa-mLfOCu40uvraNu4ItfKsI6DM64YeSbN-r9eM5OGt0GuvibU_Z8s9jMb5PVenk3n60SI5QaEm0kgBUgTd2kqZK1rI2KQTDDXMUPVQ3SprZIC4lCCF1kjURb5KgsAaoynTLc340_huCpqT68e9d-rBCqXTPVQTPRI_aeENnulXy17T99zB_-Mf0A9Y5lVQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Solyaev, Y.</creator><creator>Ustenko, A.</creator><creator>Lykosova, E.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory</title><author>Solyaev, Y. ; Ustenko, A. ; Lykosova, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-ac400d204cbf3384b4bc8950151682668b04d3d73741222a75f41d7618de01893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solyaev, Y.</creatorcontrib><creatorcontrib>Ustenko, A.</creatorcontrib><creatorcontrib>Lykosova, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solyaev, Y.</au><au>Ustenko, A.</au><au>Lykosova, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>41</volume><issue>10</issue><spage>2076</spage><epage>2082</epage><pages>2076-2082</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution around the supproted end of the cantilever taking into account the extended number of boundary conditions, which cannot be captured in classical models.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080220100157</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2020-10, Vol.41 (10), p.2076-2082 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1995080220100157 |
source | SpringerLink Journals |
subjects | Algebra Analysis Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes |
title | Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20Analysis%20of%20Piezoelectric%20Microcantilevers%20in%20Gradient%20Electroelasticity%20Theory&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Solyaev,%20Y.&rft.date=2020-10-01&rft.volume=41&rft.issue=10&rft.spage=2076&rft.epage=2082&rft.pages=2076-2082&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080220100157&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995080220100157%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |