Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory

In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution arou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2020-10, Vol.41 (10), p.2076-2082
Hauptverfasser: Solyaev, Y., Ustenko, A., Lykosova, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2082
container_issue 10
container_start_page 2076
container_title Lobachevskii journal of mathematics
container_volume 41
creator Solyaev, Y.
Ustenko, A.
Lykosova, E.
description In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution around the supproted end of the cantilever taking into account the extended number of boundary conditions, which cannot be captured in classical models.
doi_str_mv 10.1134/S1995080220100157
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995080220100157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995080220100157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-ac400d204cbf3384b4bc8950151682668b04d3d73741222a75f41d7618de01893</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gLf9A9GZzSbZHEupVahUtOIxbHYnuiUmshuF-OvdWm8FTzPwvjfMe4xdIlwhpvL6CcsyAwVCAAJgVhyxCSpUSVnm4jjuUU52-ik7C2ELEczzfMJeHqlxHVk-63Q7Bhd43_AHR989tWQG7wy_d8b3RneDa-mLfOCu40uvraNu4ItfKsI6DM64YeSbN-r9eM5OGt0GuvibU_Z8s9jMb5PVenk3n60SI5QaEm0kgBUgTd2kqZK1rI2KQTDDXMUPVQ3SprZIC4lCCF1kjURb5KgsAaoynTLc340_huCpqT68e9d-rBCqXTPVQTPRI_aeENnulXy17T99zB_-Mf0A9Y5lVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory</title><source>SpringerLink Journals</source><creator>Solyaev, Y. ; Ustenko, A. ; Lykosova, E.</creator><creatorcontrib>Solyaev, Y. ; Ustenko, A. ; Lykosova, E.</creatorcontrib><description>In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution around the supproted end of the cantilever taking into account the extended number of boundary conditions, which cannot be captured in classical models.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080220100157</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2020-10, Vol.41 (10), p.2076-2082</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-ac400d204cbf3384b4bc8950151682668b04d3d73741222a75f41d7618de01893</citedby><cites>FETCH-LOGICAL-c288t-ac400d204cbf3384b4bc8950151682668b04d3d73741222a75f41d7618de01893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080220100157$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080220100157$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Solyaev, Y.</creatorcontrib><creatorcontrib>Ustenko, A.</creatorcontrib><creatorcontrib>Lykosova, E.</creatorcontrib><title>Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution around the supproted end of the cantilever taking into account the extended number of boundary conditions, which cannot be captured in classical models.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZ_gLf9A9GZzSbZHEupVahUtOIxbHYnuiUmshuF-OvdWm8FTzPwvjfMe4xdIlwhpvL6CcsyAwVCAAJgVhyxCSpUSVnm4jjuUU52-ik7C2ELEczzfMJeHqlxHVk-63Q7Bhd43_AHR989tWQG7wy_d8b3RneDa-mLfOCu40uvraNu4ItfKsI6DM64YeSbN-r9eM5OGt0GuvibU_Z8s9jMb5PVenk3n60SI5QaEm0kgBUgTd2kqZK1rI2KQTDDXMUPVQ3SprZIC4lCCF1kjURb5KgsAaoynTLc340_huCpqT68e9d-rBCqXTPVQTPRI_aeENnulXy17T99zB_-Mf0A9Y5lVQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Solyaev, Y.</creator><creator>Ustenko, A.</creator><creator>Lykosova, E.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory</title><author>Solyaev, Y. ; Ustenko, A. ; Lykosova, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-ac400d204cbf3384b4bc8950151682668b04d3d73741222a75f41d7618de01893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solyaev, Y.</creatorcontrib><creatorcontrib>Ustenko, A.</creatorcontrib><creatorcontrib>Lykosova, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solyaev, Y.</au><au>Ustenko, A.</au><au>Lykosova, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>41</volume><issue>10</issue><spage>2076</spage><epage>2082</epage><pages>2076-2082</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper we present analytical solutions for the cantilever beam bending problems obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We show that considered model allows to provide the refined analysis for the electric field distribution around the supproted end of the cantilever taking into account the extended number of boundary conditions, which cannot be captured in classical models.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080220100157</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2020-10, Vol.41 (10), p.2076-2082
issn 1995-0802
1818-9962
language eng
recordid cdi_crossref_primary_10_1134_S1995080220100157
source SpringerLink Journals
subjects Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20Analysis%20of%20Piezoelectric%20Microcantilevers%20in%20Gradient%20Electroelasticity%20Theory&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Solyaev,%20Y.&rft.date=2020-10-01&rft.volume=41&rft.issue=10&rft.spage=2076&rft.epage=2082&rft.pages=2076-2082&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080220100157&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995080220100157%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true