Variational Formulation of Linear Equations of Coupled Thermohydrodynamics and Heat Conductivity

We consider the coupled processes of thermohydrodynamics and heat conduction and construct a variational model of such coupled problems using four-dimensional space-time continuum where time is an equal coordinate along with spatial coordinates. In this consideration 3D subspace of generalized four-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2020-10, Vol.41 (10), p.1949-1963
Hauptverfasser: Belov, P. A., Lurie, S. A., Dobryanskiy, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1963
container_issue 10
container_start_page 1949
container_title Lobachevskii journal of mathematics
container_volume 41
creator Belov, P. A.
Lurie, S. A.
Dobryanskiy, V. N.
description We consider the coupled processes of thermohydrodynamics and heat conduction and construct a variational model of such coupled problems using four-dimensional space-time continuum where time is an equal coordinate along with spatial coordinates. In this consideration 3D subspace of generalized four-dimensional pseudo-continuum is associated with three-dimension deformed media. In the general case we consider irreversible processes and use the variational principle of possible displacements and the variational Sedov’s principle to construct variation model. It is assumed that the 4D pseudo-continuum considered below is transversely isotropic in the direction of the unit vector of time. Thus, an asymmetric 4D stress tensor preserves the symmetry properties with respect to spatial tangential stresses in 3D subspaces. It is shown that the proposed version of the model allows us to formulate the full range of consistent thermomechanical and thermodynamic physical relations, and the system of governing equations includes, as special cases, the equations of thermoelasticity, thermohydrodynamics, the linear Navier–Stokes equations for compressible and incompressible media, the equations of heat balance with the laws of thermal conductivity of Fourier, Maxwell–Cattaneo.
doi_str_mv 10.1134/S1995080220100042
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995080220100042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995080220100042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-ee41ae115c976ca8929743abb4ca342b9c06eb852d1a4a90ca4e0adcc22c56e83</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwAdz8AwHbcVz7iKqWVqrEgcI1bGyXukriYidI-XuclhsSp92debOHQeiekgdKc_74SpUqiCSMEUoI4ewCTaikMlNKsMu0Jzsb_Wt0E-OBJFAIMUEf7xAcdM63UOOlD01fny7sd3jjWgsBL776kxRHbe77Y20N3u5taPx-MMGboYXG6YihNXhloUtQa3rduW_XDbfoagd1tHe_c4relovtfJVtXp7X86dNppmUXWYtp2ApLbSaCQ1SMTXjOVQV15BzVilNhK1kwQwFDopo4JaA0ZoxXQgr8ymi5786-BiD3ZXH4BoIQ0lJOVZU_qkoZdg5ExPbftpQHnwfUhPxn9APQNZqgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variational Formulation of Linear Equations of Coupled Thermohydrodynamics and Heat Conductivity</title><source>SpringerLink Journals</source><creator>Belov, P. A. ; Lurie, S. A. ; Dobryanskiy, V. N.</creator><creatorcontrib>Belov, P. A. ; Lurie, S. A. ; Dobryanskiy, V. N.</creatorcontrib><description>We consider the coupled processes of thermohydrodynamics and heat conduction and construct a variational model of such coupled problems using four-dimensional space-time continuum where time is an equal coordinate along with spatial coordinates. In this consideration 3D subspace of generalized four-dimensional pseudo-continuum is associated with three-dimension deformed media. In the general case we consider irreversible processes and use the variational principle of possible displacements and the variational Sedov’s principle to construct variation model. It is assumed that the 4D pseudo-continuum considered below is transversely isotropic in the direction of the unit vector of time. Thus, an asymmetric 4D stress tensor preserves the symmetry properties with respect to spatial tangential stresses in 3D subspaces. It is shown that the proposed version of the model allows us to formulate the full range of consistent thermomechanical and thermodynamic physical relations, and the system of governing equations includes, as special cases, the equations of thermoelasticity, thermohydrodynamics, the linear Navier–Stokes equations for compressible and incompressible media, the equations of heat balance with the laws of thermal conductivity of Fourier, Maxwell–Cattaneo.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080220100042</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2020-10, Vol.41 (10), p.1949-1963</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-ee41ae115c976ca8929743abb4ca342b9c06eb852d1a4a90ca4e0adcc22c56e83</citedby><cites>FETCH-LOGICAL-c288t-ee41ae115c976ca8929743abb4ca342b9c06eb852d1a4a90ca4e0adcc22c56e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080220100042$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080220100042$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Belov, P. A.</creatorcontrib><creatorcontrib>Lurie, S. A.</creatorcontrib><creatorcontrib>Dobryanskiy, V. N.</creatorcontrib><title>Variational Formulation of Linear Equations of Coupled Thermohydrodynamics and Heat Conductivity</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We consider the coupled processes of thermohydrodynamics and heat conduction and construct a variational model of such coupled problems using four-dimensional space-time continuum where time is an equal coordinate along with spatial coordinates. In this consideration 3D subspace of generalized four-dimensional pseudo-continuum is associated with three-dimension deformed media. In the general case we consider irreversible processes and use the variational principle of possible displacements and the variational Sedov’s principle to construct variation model. It is assumed that the 4D pseudo-continuum considered below is transversely isotropic in the direction of the unit vector of time. Thus, an asymmetric 4D stress tensor preserves the symmetry properties with respect to spatial tangential stresses in 3D subspaces. It is shown that the proposed version of the model allows us to formulate the full range of consistent thermomechanical and thermodynamic physical relations, and the system of governing equations includes, as special cases, the equations of thermoelasticity, thermohydrodynamics, the linear Navier–Stokes equations for compressible and incompressible media, the equations of heat balance with the laws of thermal conductivity of Fourier, Maxwell–Cattaneo.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqXwAdz8AwHbcVz7iKqWVqrEgcI1bGyXukriYidI-XuclhsSp92debOHQeiekgdKc_74SpUqiCSMEUoI4ewCTaikMlNKsMu0Jzsb_Wt0E-OBJFAIMUEf7xAcdM63UOOlD01fny7sd3jjWgsBL776kxRHbe77Y20N3u5taPx-MMGboYXG6YihNXhloUtQa3rduW_XDbfoagd1tHe_c4relovtfJVtXp7X86dNppmUXWYtp2ApLbSaCQ1SMTXjOVQV15BzVilNhK1kwQwFDopo4JaA0ZoxXQgr8ymi5786-BiD3ZXH4BoIQ0lJOVZU_qkoZdg5ExPbftpQHnwfUhPxn9APQNZqgg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Belov, P. A.</creator><creator>Lurie, S. A.</creator><creator>Dobryanskiy, V. N.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Variational Formulation of Linear Equations of Coupled Thermohydrodynamics and Heat Conductivity</title><author>Belov, P. A. ; Lurie, S. A. ; Dobryanskiy, V. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-ee41ae115c976ca8929743abb4ca342b9c06eb852d1a4a90ca4e0adcc22c56e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belov, P. A.</creatorcontrib><creatorcontrib>Lurie, S. A.</creatorcontrib><creatorcontrib>Dobryanskiy, V. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belov, P. A.</au><au>Lurie, S. A.</au><au>Dobryanskiy, V. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Formulation of Linear Equations of Coupled Thermohydrodynamics and Heat Conductivity</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>41</volume><issue>10</issue><spage>1949</spage><epage>1963</epage><pages>1949-1963</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We consider the coupled processes of thermohydrodynamics and heat conduction and construct a variational model of such coupled problems using four-dimensional space-time continuum where time is an equal coordinate along with spatial coordinates. In this consideration 3D subspace of generalized four-dimensional pseudo-continuum is associated with three-dimension deformed media. In the general case we consider irreversible processes and use the variational principle of possible displacements and the variational Sedov’s principle to construct variation model. It is assumed that the 4D pseudo-continuum considered below is transversely isotropic in the direction of the unit vector of time. Thus, an asymmetric 4D stress tensor preserves the symmetry properties with respect to spatial tangential stresses in 3D subspaces. It is shown that the proposed version of the model allows us to formulate the full range of consistent thermomechanical and thermodynamic physical relations, and the system of governing equations includes, as special cases, the equations of thermoelasticity, thermohydrodynamics, the linear Navier–Stokes equations for compressible and incompressible media, the equations of heat balance with the laws of thermal conductivity of Fourier, Maxwell–Cattaneo.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080220100042</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2020-10, Vol.41 (10), p.1949-1963
issn 1995-0802
1818-9962
language eng
recordid cdi_crossref_primary_10_1134_S1995080220100042
source SpringerLink Journals
subjects Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Variational Formulation of Linear Equations of Coupled Thermohydrodynamics and Heat Conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Formulation%20of%20Linear%20Equations%20of%20Coupled%20Thermohydrodynamics%20and%20Heat%20Conductivity&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Belov,%20P.%20A.&rft.date=2020-10-01&rft.volume=41&rft.issue=10&rft.spage=1949&rft.epage=1963&rft.pages=1949-1963&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080220100042&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995080220100042%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true