Back faces of a face polytope

Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2015-04, Vol.36 (2), p.190-197
1. Verfasser: Matveev, M. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 2
container_start_page 190
container_title Lobachevskii journal of mathematics
container_volume 36
creator Matveev, M. N.
description Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of a polytope so that they can be used as faces spanning cones of a polytopal fan regardless of dimension. As an application of back faces a theorem is proved according to which some positive combination of solid face polytopes flattens, becomes a plane face polytope.
doi_str_mv 10.1134/S1995080215020134
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995080215020134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995080215020134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-944fd951653da8a9111749a9685ebd3149ca8f4229f2e6dede96a57a0b560ac3</originalsourceid><addsrcrecordid>eNp9j81KQzEQhYNYsLY-gAvhvkA0k5ukmaUW_6Dgwu7DND9irc0lqYu-val1J7iaw5z5hnMYuwRxDdCrm1dA1MIKCVpI0TYnbAwWLEc08rTpZvODf8bOa10LIaUxZsyu7sh_dIl8rF1OHf3Ibsib_S4PccpGiTY1XvzOCVs-3C_nT3zx8vg8v11wL63dcVQqBdRgdB_IEgLATCGhsTquQg8KPdmkpMQkowkxRDSkZyRW2gjy_YTB8a0vudYSkxvK-yeVvQPhDvXcn3qNkUemttvtWyxunb_KtqX8B_oGfntPMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Back faces of a face polytope</title><source>SpringerLink Journals - AutoHoldings</source><creator>Matveev, M. N.</creator><creatorcontrib>Matveev, M. N.</creatorcontrib><description>Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of a polytope so that they can be used as faces spanning cones of a polytopal fan regardless of dimension. As an application of back faces a theorem is proved according to which some positive combination of solid face polytopes flattens, becomes a plane face polytope.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080215020134</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2015-04, Vol.36 (2), p.190-197</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-944fd951653da8a9111749a9685ebd3149ca8f4229f2e6dede96a57a0b560ac3</citedby><cites>FETCH-LOGICAL-c288t-944fd951653da8a9111749a9685ebd3149ca8f4229f2e6dede96a57a0b560ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080215020134$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080215020134$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Matveev, M. N.</creatorcontrib><title>Back faces of a face polytope</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of a polytope so that they can be used as faces spanning cones of a polytopal fan regardless of dimension. As an application of back faces a theorem is proved according to which some positive combination of solid face polytopes flattens, becomes a plane face polytope.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j81KQzEQhYNYsLY-gAvhvkA0k5ukmaUW_6Dgwu7DND9irc0lqYu-val1J7iaw5z5hnMYuwRxDdCrm1dA1MIKCVpI0TYnbAwWLEc08rTpZvODf8bOa10LIaUxZsyu7sh_dIl8rF1OHf3Ibsib_S4PccpGiTY1XvzOCVs-3C_nT3zx8vg8v11wL63dcVQqBdRgdB_IEgLATCGhsTquQg8KPdmkpMQkowkxRDSkZyRW2gjy_YTB8a0vudYSkxvK-yeVvQPhDvXcn3qNkUemttvtWyxunb_KtqX8B_oGfntPMw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Matveev, M. N.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>Back faces of a face polytope</title><author>Matveev, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-944fd951653da8a9111749a9685ebd3149ca8f4229f2e6dede96a57a0b560ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matveev, M. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matveev, M. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back faces of a face polytope</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>36</volume><issue>2</issue><spage>190</spage><epage>197</epage><pages>190-197</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of a polytope so that they can be used as faces spanning cones of a polytopal fan regardless of dimension. As an application of back faces a theorem is proved according to which some positive combination of solid face polytopes flattens, becomes a plane face polytope.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080215020134</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2015-04, Vol.36 (2), p.190-197
issn 1995-0802
1818-9962
language eng
recordid cdi_crossref_primary_10_1134_S1995080215020134
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Back faces of a face polytope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%20faces%20of%20a%20face%20polytope&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Matveev,%20M.%20N.&rft.date=2015-04-01&rft.volume=36&rft.issue=2&rft.spage=190&rft.epage=197&rft.pages=190-197&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080215020134&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995080215020134%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true