Back faces of a face polytope
Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2015-04, Vol.36 (2), p.190-197 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 2 |
container_start_page | 190 |
container_title | Lobachevskii journal of mathematics |
container_volume | 36 |
creator | Matveev, M. N. |
description | Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of a polytope so that they can be used as faces spanning cones of a polytopal fan regardless of dimension. As an application of back faces a theorem is proved according to which some positive combination of solid face polytopes flattens, becomes a plane face polytope. |
doi_str_mv | 10.1134/S1995080215020134 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995080215020134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995080215020134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-944fd951653da8a9111749a9685ebd3149ca8f4229f2e6dede96a57a0b560ac3</originalsourceid><addsrcrecordid>eNp9j81KQzEQhYNYsLY-gAvhvkA0k5ukmaUW_6Dgwu7DND9irc0lqYu-val1J7iaw5z5hnMYuwRxDdCrm1dA1MIKCVpI0TYnbAwWLEc08rTpZvODf8bOa10LIaUxZsyu7sh_dIl8rF1OHf3Ibsib_S4PccpGiTY1XvzOCVs-3C_nT3zx8vg8v11wL63dcVQqBdRgdB_IEgLATCGhsTquQg8KPdmkpMQkowkxRDSkZyRW2gjy_YTB8a0vudYSkxvK-yeVvQPhDvXcn3qNkUemttvtWyxunb_KtqX8B_oGfntPMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Back faces of a face polytope</title><source>SpringerLink Journals - AutoHoldings</source><creator>Matveev, M. N.</creator><creatorcontrib>Matveev, M. N.</creatorcontrib><description>Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of a polytope so that they can be used as faces spanning cones of a polytopal fan regardless of dimension. As an application of back faces a theorem is proved according to which some positive combination of solid face polytopes flattens, becomes a plane face polytope.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080215020134</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2015-04, Vol.36 (2), p.190-197</ispartof><rights>Pleiades Publishing, Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-944fd951653da8a9111749a9685ebd3149ca8f4229f2e6dede96a57a0b560ac3</citedby><cites>FETCH-LOGICAL-c288t-944fd951653da8a9111749a9685ebd3149ca8f4229f2e6dede96a57a0b560ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080215020134$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080215020134$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Matveev, M. N.</creatorcontrib><title>Back faces of a face polytope</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of a polytope so that they can be used as faces spanning cones of a polytopal fan regardless of dimension. As an application of back faces a theorem is proved according to which some positive combination of solid face polytopes flattens, becomes a plane face polytope.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j81KQzEQhYNYsLY-gAvhvkA0k5ukmaUW_6Dgwu7DND9irc0lqYu-val1J7iaw5z5hnMYuwRxDdCrm1dA1MIKCVpI0TYnbAwWLEc08rTpZvODf8bOa10LIaUxZsyu7sh_dIl8rF1OHf3Ibsib_S4PccpGiTY1XvzOCVs-3C_nT3zx8vg8v11wL63dcVQqBdRgdB_IEgLATCGhsTquQg8KPdmkpMQkowkxRDSkZyRW2gjy_YTB8a0vudYSkxvK-yeVvQPhDvXcn3qNkUemttvtWyxunb_KtqX8B_oGfntPMw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Matveev, M. N.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>Back faces of a face polytope</title><author>Matveev, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-944fd951653da8a9111749a9685ebd3149ca8f4229f2e6dede96a57a0b560ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matveev, M. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matveev, M. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back faces of a face polytope</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>36</volume><issue>2</issue><spage>190</spage><epage>197</epage><pages>190-197</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Full-dimensional cones of polytopal fans are spanned by invisible facets of face polytopes. However invisible faces cannot perform the same function for cones of lower dimension. It makes difficult considering fans with low-dimensional cones in any consistent manner. The paper defines back faces of a polytope so that they can be used as faces spanning cones of a polytopal fan regardless of dimension. As an application of back faces a theorem is proved according to which some positive combination of solid face polytopes flattens, becomes a plane face polytope.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080215020134</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2015-04, Vol.36 (2), p.190-197 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1995080215020134 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes |
title | Back faces of a face polytope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%20faces%20of%20a%20face%20polytope&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Matveev,%20M.%20N.&rft.date=2015-04-01&rft.volume=36&rft.issue=2&rft.spage=190&rft.epage=197&rft.pages=190-197&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080215020134&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995080215020134%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |