The Lie derivative of currents on Lie groups
The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2012, Vol.33 (1), p.10-21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 10 |
container_title | Lobachevskii journal of mathematics |
container_volume | 33 |
creator | Chi, Kieu Phuong Quang, Nguyen Huu Van, Bui Cao |
description | The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups. |
doi_str_mv | 10.1134/S1995080212010027 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995080212010027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995080212010027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-c33d4c115fecd707cb5af7b0b3fb261d76235c128aa5758fe079b1fc51c2c77d3</originalsourceid><addsrcrecordid>eNp9j01Lw0AQhhdRsFZ_gLf8AFd3ZrsfOUpRKwQ8WM9hM9mtKZqU3aTgv3drvQmeZuB5n2Fexq5B3ALIxd0rlKUSViCgACHQnLAZWLC8LDWe5j1jfuDn7CKlbU6g1nrGbtbvvqg6X7Q-dns3dntfDKGgKUbfj6kY-h-6icO0S5fsLLiP5K9-55y9PT6slytevTw9L-8rTmjtyEnKdkEAKnhqjTDUKBdMIxoZGtTQGo1SEaB1ThllgxembCCQAkIyppVzBse7FIeUog_1LnafLn7VIOpD3fpP3ezg0Uk52298rLfDFPv85j_SN4ekVec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Lie derivative of currents on Lie groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chi, Kieu Phuong ; Quang, Nguyen Huu ; Van, Bui Cao</creator><creatorcontrib>Chi, Kieu Phuong ; Quang, Nguyen Huu ; Van, Bui Cao</creatorcontrib><description>The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080212010027</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2012, Vol.33 (1), p.10-21</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-c33d4c115fecd707cb5af7b0b3fb261d76235c128aa5758fe079b1fc51c2c77d3</citedby><cites>FETCH-LOGICAL-c288t-c33d4c115fecd707cb5af7b0b3fb261d76235c128aa5758fe079b1fc51c2c77d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080212010027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080212010027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chi, Kieu Phuong</creatorcontrib><creatorcontrib>Quang, Nguyen Huu</creatorcontrib><creatorcontrib>Van, Bui Cao</creatorcontrib><title>The Lie derivative of currents on Lie groups</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9j01Lw0AQhhdRsFZ_gLf8AFd3ZrsfOUpRKwQ8WM9hM9mtKZqU3aTgv3drvQmeZuB5n2Fexq5B3ALIxd0rlKUSViCgACHQnLAZWLC8LDWe5j1jfuDn7CKlbU6g1nrGbtbvvqg6X7Q-dns3dntfDKGgKUbfj6kY-h-6icO0S5fsLLiP5K9-55y9PT6slytevTw9L-8rTmjtyEnKdkEAKnhqjTDUKBdMIxoZGtTQGo1SEaB1ThllgxembCCQAkIyppVzBse7FIeUog_1LnafLn7VIOpD3fpP3ezg0Uk52298rLfDFPv85j_SN4ekVec</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Chi, Kieu Phuong</creator><creator>Quang, Nguyen Huu</creator><creator>Van, Bui Cao</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>The Lie derivative of currents on Lie groups</title><author>Chi, Kieu Phuong ; Quang, Nguyen Huu ; Van, Bui Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-c33d4c115fecd707cb5af7b0b3fb261d76235c128aa5758fe079b1fc51c2c77d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Kieu Phuong</creatorcontrib><creatorcontrib>Quang, Nguyen Huu</creatorcontrib><creatorcontrib>Van, Bui Cao</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Kieu Phuong</au><au>Quang, Nguyen Huu</au><au>Van, Bui Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lie derivative of currents on Lie groups</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2012</date><risdate>2012</risdate><volume>33</volume><issue>1</issue><spage>10</spage><epage>21</epage><pages>10-21</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1995080212010027</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2012, Vol.33 (1), p.10-21 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_crossref_primary_10_1134_S1995080212010027 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes |
title | The Lie derivative of currents on Lie groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lie%20derivative%20of%20currents%20on%20Lie%20groups&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Chi,%20Kieu%20Phuong&rft.date=2012&rft.volume=33&rft.issue=1&rft.spage=10&rft.epage=21&rft.pages=10-21&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080212010027&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995080212010027%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |