The Lie derivative of currents on Lie groups

The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2012, Vol.33 (1), p.10-21
Hauptverfasser: Chi, Kieu Phuong, Quang, Nguyen Huu, Van, Bui Cao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 10
container_title Lobachevskii journal of mathematics
container_volume 33
creator Chi, Kieu Phuong
Quang, Nguyen Huu
Van, Bui Cao
description The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.
doi_str_mv 10.1134/S1995080212010027
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1995080212010027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1995080212010027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-c33d4c115fecd707cb5af7b0b3fb261d76235c128aa5758fe079b1fc51c2c77d3</originalsourceid><addsrcrecordid>eNp9j01Lw0AQhhdRsFZ_gLf8AFd3ZrsfOUpRKwQ8WM9hM9mtKZqU3aTgv3drvQmeZuB5n2Fexq5B3ALIxd0rlKUSViCgACHQnLAZWLC8LDWe5j1jfuDn7CKlbU6g1nrGbtbvvqg6X7Q-dns3dntfDKGgKUbfj6kY-h-6icO0S5fsLLiP5K9-55y9PT6slytevTw9L-8rTmjtyEnKdkEAKnhqjTDUKBdMIxoZGtTQGo1SEaB1ThllgxembCCQAkIyppVzBse7FIeUog_1LnafLn7VIOpD3fpP3ezg0Uk52298rLfDFPv85j_SN4ekVec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Lie derivative of currents on Lie groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chi, Kieu Phuong ; Quang, Nguyen Huu ; Van, Bui Cao</creator><creatorcontrib>Chi, Kieu Phuong ; Quang, Nguyen Huu ; Van, Bui Cao</creatorcontrib><description>The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080212010027</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2012, Vol.33 (1), p.10-21</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-c33d4c115fecd707cb5af7b0b3fb261d76235c128aa5758fe079b1fc51c2c77d3</citedby><cites>FETCH-LOGICAL-c288t-c33d4c115fecd707cb5af7b0b3fb261d76235c128aa5758fe079b1fc51c2c77d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080212010027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080212010027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chi, Kieu Phuong</creatorcontrib><creatorcontrib>Quang, Nguyen Huu</creatorcontrib><creatorcontrib>Van, Bui Cao</creatorcontrib><title>The Lie derivative of currents on Lie groups</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9j01Lw0AQhhdRsFZ_gLf8AFd3ZrsfOUpRKwQ8WM9hM9mtKZqU3aTgv3drvQmeZuB5n2Fexq5B3ALIxd0rlKUSViCgACHQnLAZWLC8LDWe5j1jfuDn7CKlbU6g1nrGbtbvvqg6X7Q-dns3dntfDKGgKUbfj6kY-h-6icO0S5fsLLiP5K9-55y9PT6slytevTw9L-8rTmjtyEnKdkEAKnhqjTDUKBdMIxoZGtTQGo1SEaB1ThllgxembCCQAkIyppVzBse7FIeUog_1LnafLn7VIOpD3fpP3ezg0Uk52298rLfDFPv85j_SN4ekVec</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Chi, Kieu Phuong</creator><creator>Quang, Nguyen Huu</creator><creator>Van, Bui Cao</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>The Lie derivative of currents on Lie groups</title><author>Chi, Kieu Phuong ; Quang, Nguyen Huu ; Van, Bui Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-c33d4c115fecd707cb5af7b0b3fb261d76235c128aa5758fe079b1fc51c2c77d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Kieu Phuong</creatorcontrib><creatorcontrib>Quang, Nguyen Huu</creatorcontrib><creatorcontrib>Van, Bui Cao</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Kieu Phuong</au><au>Quang, Nguyen Huu</au><au>Van, Bui Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lie derivative of currents on Lie groups</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2012</date><risdate>2012</risdate><volume>33</volume><issue>1</issue><spage>10</spage><epage>21</epage><pages>10-21</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The aim of this work is to study the properties of the Lie derivative of currents and generalized forms on Riemann manifolds. For an application, we give some results of the Lie derivative of currents and generalized forms on Lie groups.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1995080212010027</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2012, Vol.33 (1), p.10-21
issn 1995-0802
1818-9962
language eng
recordid cdi_crossref_primary_10_1134_S1995080212010027
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title The Lie derivative of currents on Lie groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lie%20derivative%20of%20currents%20on%20Lie%20groups&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Chi,%20Kieu%20Phuong&rft.date=2012&rft.volume=33&rft.issue=1&rft.spage=10&rft.epage=21&rft.pages=10-21&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080212010027&rft_dat=%3Ccrossref_sprin%3E10_1134_S1995080212010027%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true