A self-consistent model for the production and growth of nanoparticles in low-temperature plasmas

A theoretical global model is presented for describing the kinetics of generation and growth of clusters and nanoparticles in low-pressure plasmas, where important processes for clusters and grains are collisions with monomers, electrons, and ions and particle coagulation and loss because of diffusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of physical chemistry. B 2008-04, Vol.2 (2), p.315-328
Hauptverfasser: Gordiets, B. F., Bertran, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 2
container_start_page 315
container_title Russian journal of physical chemistry. B
container_volume 2
creator Gordiets, B. F.
Bertran, E.
description A theoretical global model is presented for describing the kinetics of generation and growth of clusters and nanoparticles in low-pressure plasmas, where important processes for clusters and grains are collisions with monomers, electrons, and ions and particle coagulation and loss because of diffusion and gas flow drag. Simple equations are given for calculations of monomer density, particle-size distribution function, critical cluster size, the rate of particle production and particle density and mean size, and plasma characteristics (the densities and average energies of “cold” and “hot” electrons and the density of positively charged ions). The model is self-consistent; that is, the above-mentioned properties of clusters, nanoparticles, electrons, and ions are calculated jointly from coupled equations as functions of a small number of radio frequency (RF) discharge parameters (discharge geometry; absorbed electric power; voltage across the RF sheath; gas pressure; composition; and flow rate). Comparisons are made with the experimental data on SiH 4 -Ar mixtures.
doi_str_mv 10.1134/S1990793108020243
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1134_S1990793108020243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1990793108020243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-b4355aea8970277b26e6b0c88d899b8e2a2efa2d22cdfe51d6b3eea5d5376e503</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFv-wGo-upvkWIofhYIH9bzMJrPtlt1kSVKK_94tFS-Cp3kZ3mcYHkLuOXvgXC4e37kxTBnJmWaCiYW8ILPTqlBGyMvfLPk1uUlpz1gllGEzAkuasG8LG3zqUkaf6RAc9rQNkeYd0jEGd7C5C56Cd3QbwzHvaGipBx9GiLmzPSbaedqHY5FxGDFCPsSJ7CENkG7JVQt9wrufOSefz08fq9di8_ayXi03hRVa56JZyLIEBG0UE0o1osKqYVZrp41pNAoQ2IJwQljXYsld1UhEKF0pVYUlk3PCz3dtDClFbOsxdgPEr5qz-uSo_uNoYsSZSVPXbzHW-3CIfnrzH-gbsHJq9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A self-consistent model for the production and growth of nanoparticles in low-temperature plasmas</title><source>SpringerLink</source><creator>Gordiets, B. F. ; Bertran, E.</creator><creatorcontrib>Gordiets, B. F. ; Bertran, E.</creatorcontrib><description>A theoretical global model is presented for describing the kinetics of generation and growth of clusters and nanoparticles in low-pressure plasmas, where important processes for clusters and grains are collisions with monomers, electrons, and ions and particle coagulation and loss because of diffusion and gas flow drag. Simple equations are given for calculations of monomer density, particle-size distribution function, critical cluster size, the rate of particle production and particle density and mean size, and plasma characteristics (the densities and average energies of “cold” and “hot” electrons and the density of positively charged ions). The model is self-consistent; that is, the above-mentioned properties of clusters, nanoparticles, electrons, and ions are calculated jointly from coupled equations as functions of a small number of radio frequency (RF) discharge parameters (discharge geometry; absorbed electric power; voltage across the RF sheath; gas pressure; composition; and flow rate). Comparisons are made with the experimental data on SiH 4 -Ar mixtures.</description><identifier>ISSN: 1990-7931</identifier><identifier>EISSN: 1990-7923</identifier><identifier>DOI: 10.1134/S1990793108020243</identifier><language>eng</language><publisher>Moscow: Nauka/Interperiodica</publisher><subject>Chemistry ; Chemistry and Materials Science ; Nanoparticles ; Physical Chemistry</subject><ispartof>Russian journal of physical chemistry. B, 2008-04, Vol.2 (2), p.315-328</ispartof><rights>MAIK Nauka 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-b4355aea8970277b26e6b0c88d899b8e2a2efa2d22cdfe51d6b3eea5d5376e503</citedby><cites>FETCH-LOGICAL-c288t-b4355aea8970277b26e6b0c88d899b8e2a2efa2d22cdfe51d6b3eea5d5376e503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990793108020243$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990793108020243$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Gordiets, B. F.</creatorcontrib><creatorcontrib>Bertran, E.</creatorcontrib><title>A self-consistent model for the production and growth of nanoparticles in low-temperature plasmas</title><title>Russian journal of physical chemistry. B</title><addtitle>Russ. J. Phys. Chem. B</addtitle><description>A theoretical global model is presented for describing the kinetics of generation and growth of clusters and nanoparticles in low-pressure plasmas, where important processes for clusters and grains are collisions with monomers, electrons, and ions and particle coagulation and loss because of diffusion and gas flow drag. Simple equations are given for calculations of monomer density, particle-size distribution function, critical cluster size, the rate of particle production and particle density and mean size, and plasma characteristics (the densities and average energies of “cold” and “hot” electrons and the density of positively charged ions). The model is self-consistent; that is, the above-mentioned properties of clusters, nanoparticles, electrons, and ions are calculated jointly from coupled equations as functions of a small number of radio frequency (RF) discharge parameters (discharge geometry; absorbed electric power; voltage across the RF sheath; gas pressure; composition; and flow rate). Comparisons are made with the experimental data on SiH 4 -Ar mixtures.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Nanoparticles</subject><subject>Physical Chemistry</subject><issn>1990-7931</issn><issn>1990-7923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFv-wGo-upvkWIofhYIH9bzMJrPtlt1kSVKK_94tFS-Cp3kZ3mcYHkLuOXvgXC4e37kxTBnJmWaCiYW8ILPTqlBGyMvfLPk1uUlpz1gllGEzAkuasG8LG3zqUkaf6RAc9rQNkeYd0jEGd7C5C56Cd3QbwzHvaGipBx9GiLmzPSbaedqHY5FxGDFCPsSJ7CENkG7JVQt9wrufOSefz08fq9di8_ayXi03hRVa56JZyLIEBG0UE0o1osKqYVZrp41pNAoQ2IJwQljXYsld1UhEKF0pVYUlk3PCz3dtDClFbOsxdgPEr5qz-uSo_uNoYsSZSVPXbzHW-3CIfnrzH-gbsHJq9Q</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Gordiets, B. F.</creator><creator>Bertran, E.</creator><general>Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080401</creationdate><title>A self-consistent model for the production and growth of nanoparticles in low-temperature plasmas</title><author>Gordiets, B. F. ; Bertran, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-b4355aea8970277b26e6b0c88d899b8e2a2efa2d22cdfe51d6b3eea5d5376e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Nanoparticles</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordiets, B. F.</creatorcontrib><creatorcontrib>Bertran, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordiets, B. F.</au><au>Bertran, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-consistent model for the production and growth of nanoparticles in low-temperature plasmas</atitle><jtitle>Russian journal of physical chemistry. B</jtitle><stitle>Russ. J. Phys. Chem. B</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>2</volume><issue>2</issue><spage>315</spage><epage>328</epage><pages>315-328</pages><issn>1990-7931</issn><eissn>1990-7923</eissn><abstract>A theoretical global model is presented for describing the kinetics of generation and growth of clusters and nanoparticles in low-pressure plasmas, where important processes for clusters and grains are collisions with monomers, electrons, and ions and particle coagulation and loss because of diffusion and gas flow drag. Simple equations are given for calculations of monomer density, particle-size distribution function, critical cluster size, the rate of particle production and particle density and mean size, and plasma characteristics (the densities and average energies of “cold” and “hot” electrons and the density of positively charged ions). The model is self-consistent; that is, the above-mentioned properties of clusters, nanoparticles, electrons, and ions are calculated jointly from coupled equations as functions of a small number of radio frequency (RF) discharge parameters (discharge geometry; absorbed electric power; voltage across the RF sheath; gas pressure; composition; and flow rate). Comparisons are made with the experimental data on SiH 4 -Ar mixtures.</abstract><cop>Moscow</cop><pub>Nauka/Interperiodica</pub><doi>10.1134/S1990793108020243</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-7931
ispartof Russian journal of physical chemistry. B, 2008-04, Vol.2 (2), p.315-328
issn 1990-7931
1990-7923
language eng
recordid cdi_crossref_primary_10_1134_S1990793108020243
source SpringerLink
subjects Chemistry
Chemistry and Materials Science
Nanoparticles
Physical Chemistry
title A self-consistent model for the production and growth of nanoparticles in low-temperature plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-consistent%20model%20for%20the%20production%20and%20growth%20of%20nanoparticles%20in%20low-temperature%20plasmas&rft.jtitle=Russian%20journal%20of%20physical%20chemistry.%20B&rft.au=Gordiets,%20B.%20F.&rft.date=2008-04-01&rft.volume=2&rft.issue=2&rft.spage=315&rft.epage=328&rft.pages=315-328&rft.issn=1990-7931&rft.eissn=1990-7923&rft_id=info:doi/10.1134/S1990793108020243&rft_dat=%3Ccrossref_sprin%3E10_1134_S1990793108020243%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true